Suppr超能文献

脑电图(EEG)和脑磁图(MEG)数据的多模态整合:一项关于可变信噪比和传感器数量的模拟研究。

Multimodal integration of EEG and MEG data: a simulation study with variable signal-to-noise ratio and number of sensors.

作者信息

Babiloni Fabio, Babiloni Claudio, Carducci Filippo, Romani Gian Luca, Rossini Paolo M, Angelone Leonardo M, Cincotti Febo

机构信息

Dipartimento di Fisiologia Umana e Farmacologia, Università di Roma "La Sapienza," Roma, Italy.

出版信息

Hum Brain Mapp. 2004 May;22(1):52-62. doi: 10.1002/hbm.20011.

Abstract

Previous simulation studies have stressed the importance of the multimodal integration of electroencephalography (EEG) and magnetoencephalography (MEG) data in the estimation of cortical current density. In such studies, no systematic variations of the signal-to-noise ratio (SNR) and of the number of sensors were explicitly taken into account in the estimation process. We investigated effects of variable SNR and number of sensors on the accuracy of current density estimate by using multimodal EEG and MEG data. This was done by using as the dependent variable both the correlation coefficient (CC) and the relative error (RE) between imposed and estimated waveforms at the level of cortical region of interests (ROI). A realistic head and cortical surface model was used. Factors used in the simulations were: (1). the SNR of the simulated scalp data (with seven levels: infinite, 30, 20, 10, 5, 3, 1); (2). the particular inverse operator used to estimate the cortical source activity from the simulated scalp data (INVERSE, with two levels, including minimum norm and weighted minimum norm); and (3). the number of EEG or MEG sensors employed in the analysis (SENSORS, with three levels: 128, 61, 29 for EEG and 153, 61, or 38 in MEG). Analysis of variance demonstrated that all the considered factors significantly affect the CC and the RE indexes. Combined EEG-MEG data produced statistically significant lower RE and higher CC in source current density reconstructions compared to that estimated by the EEG and MEG data considered separately. These observations hold for the range of SNR values presented by the analyzed data. The superiority of current density estimation by multimodal integration of EEG and MEG was not due to differences in number of sensors between unimodal (EEG, MEG) and combined (EEG-MEG) inverse estimates. In fact, the current density estimate relative to the EEG-MEG multimodal integration involved 61 EEG plus 63 MEG sensors, whereas estimations carried out with the single modalities alone involved 128 sensors for EEG and 153 sensors for MEG. The results of the simulations also suggest that the use of simultaneous 29 EEG sensors during the MEG measurements carried out with full sensor arrangements (153 sensors) returned an accuracy of the cortical source estimate statistically similar to that obtained by combining 64 EEG and 153 MEG sensors.

摘要

先前的模拟研究强调了脑电图(EEG)和脑磁图(MEG)数据的多模态整合在估计皮质电流密度中的重要性。在这类研究中,估计过程中没有明确考虑信噪比(SNR)和传感器数量的系统变化。我们通过使用多模态EEG和MEG数据,研究了可变SNR和传感器数量对电流密度估计准确性的影响。这是通过将感兴趣的皮质区域(ROI)水平上施加的波形与估计的波形之间的相关系数(CC)和相对误差(RE)作为因变量来实现的。使用了逼真的头部和皮质表面模型。模拟中使用的因素有:(1)模拟头皮数据的SNR(有七个水平:无穷大、30、20、10、5、3、1);(2)用于从模拟头皮数据估计皮质源活动的特定逆算子(INVERSE,有两个水平,包括最小范数和加权最小范数);以及(3)分析中使用的EEG或MEG传感器数量(SENSORS,有三个水平:EEG为128、61、29,MEG为153、61或38)。方差分析表明,所有考虑的因素均显著影响CC和RE指标。与单独考虑的EEG和MEG数据估计相比,联合EEG-MEG数据在源电流密度重建中产生了统计学上显著更低的RE和更高的CC。这些观察结果适用于分析数据呈现的SNR值范围。EEG和MEG多模态整合进行电流密度估计的优越性并非由于单模态(EEG、MEG)和联合(EEG-MEG)逆估计之间传感器数量的差异。实际上,相对于EEG-MEG多模态整合的电流密度估计涉及61个EEG加上63个MEG传感器,而单独使用单模态进行的估计中,EEG涉及128个传感器,MEG涉及’153个传感器。模拟结果还表明,在使用完整传感器阵列(153个传感器)进行MEG测量期间同时使用29个EEG传感器,其皮质源估计的准确性在统计学上与组合64个EEG和153个MEG传感器所获得的准确性相似。

相似文献

3
Linear inverse source estimate of combined EEG and MEG data related to voluntary movements.
Hum Brain Mapp. 2001 Dec;14(4):197-209. doi: 10.1002/hbm.1052.
5
Monte Carlo simulation studies of EEG and MEG localization accuracy.
Hum Brain Mapp. 2002 May;16(1):47-62. doi: 10.1002/hbm.10024.
6
Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements.
PLoS One. 2014 Mar 11;9(3):e91441. doi: 10.1371/journal.pone.0091441. eCollection 2014.
8
Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging.
Hum Brain Mapp. 2013 Apr;34(4):775-95. doi: 10.1002/hbm.21473. Epub 2011 Nov 18.
9
Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation.
Neuroimage. 2008 Sep 1;42(3):1069-77. doi: 10.1016/j.neuroimage.2008.05.064. Epub 2008 Jun 14.

引用本文的文献

1
Volumetric mesoscopic electrophysiology: a new imaging modality for the nonhuman primate.
J Neurophysiol. 2025 Apr 1;133(4):1034-1053. doi: 10.1152/jn.00399.2024. Epub 2025 Feb 27.
2
Spatial fidelity of MEG/EEG source estimates: A general evaluation approach.
Neuroimage. 2021 Jan 1;224:117430. doi: 10.1016/j.neuroimage.2020.117430. Epub 2020 Oct 7.
3
Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography.
Neuroimage. 2019 Nov 1;201:116099. doi: 10.1016/j.neuroimage.2019.116099. Epub 2019 Aug 14.
4
A Time-Varying Connectivity Analysis from Distributed EEG Sources: A Simulation Study.
Brain Topogr. 2018 Sep;31(5):721-737. doi: 10.1007/s10548-018-0621-3. Epub 2018 Jan 27.
5
Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy.
Hum Brain Mapp. 2018 Feb;39(2):880-901. doi: 10.1002/hbm.23889. Epub 2017 Nov 21.
6
Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.
IEEE Trans Biomed Eng. 2016 Dec;63(12):2474-2487. doi: 10.1109/TBME.2016.2616474. Epub 2016 Oct 11.
7
EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network.
PLoS One. 2015 Oct 28;10(10):e0140832. doi: 10.1371/journal.pone.0140832. eCollection 2015.
8
Effects of reconstructed magnetic field from sparse noisy boundary measurements on localization of active neural source.
Med Biol Eng Comput. 2016 Jan;54(1):177-89. doi: 10.1007/s11517-015-1381-9. Epub 2015 Sep 11.
9
A multi-subject, multi-modal human neuroimaging dataset.
Sci Data. 2015 Jan 20;2:150001. doi: 10.1038/sdata.2015.1. eCollection 2015.
10
How to use fMRI functional localizers to improve EEG/MEG source estimation.
J Neurosci Methods. 2015 Jul 30;250:64-73. doi: 10.1016/j.jneumeth.2014.07.015. Epub 2014 Aug 1.

本文引用的文献

5
Gustatory evoked cortical activity in humans studied by simultaneous EEG and MEG recording.
Chem Senses. 2002 Sep;27(7):629-34. doi: 10.1093/chemse/27.7.629.
6
Benefit of simultaneous recording of EEG and MEG in dipole localization.
Epilepsia. 2002 Aug;43(8):924-8. doi: 10.1046/j.1528-1157.2002.42901.x.
7
Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model.
IEEE Trans Biomed Eng. 2002 Jun;49(6):533-9. doi: 10.1109/TBME.2002.1001967.
8
Dipole models for the EEG and MEG.
IEEE Trans Biomed Eng. 2002 May;49(5):409-18. doi: 10.1109/10.995679.
9
Comparison between SI and SII responses as a function of stimulus intensity.
Neuroreport. 2002 May 7;13(6):813-9. doi: 10.1097/00001756-200205070-00016.
10
MEG predicts epileptic zone in lesional extrahippocampal epilepsy: 12 pediatric surgery cases.
Epilepsia. 2001 Dec;42(12):1523-30. doi: 10.1046/j.1528-1157.2001.16701.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验