Suppr超能文献

登革热病毒感染对埃及伊蚊基因的全球串扰。

Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection.

机构信息

Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

PLoS Negl Trop Dis. 2011 Nov;5(11):e1385. doi: 10.1371/journal.pntd.0001385. Epub 2011 Nov 15.

Abstract

BACKGROUND

The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.

METHODS AND RESULTS

To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A. aegypti strains at two critical early periods after challenging them with DENV. Genes that responded coordinately to DENV infection in the susceptible strain were largely clustered in one specific expression module, whereas in the refractory strain they were distributed in four distinct modules. The susceptible response module in the global transcriptional network showed significant biased representation with genes related to energy metabolism and DNA replication, whereas the refractory response modules showed biased representation across different metabolism pathway genes including cytochrome P450 and DDT [1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane] degradation genes, and genes associated with cell growth and death. A common core set of coordinately expressed genes was observed in both the susceptible and refractory mosquitoes and included genes related to the Wnt (Wnt: wingless [wg] and integration 1 [int1] pathway), MAPK (Mitogen-activated protein kinase), mTOR (mammalian target of rapamycin) and JAK-STAT (Janus Kinase - Signal Transducer and Activator of Transcription) pathways.

CONCLUSIONS

Our data revealed extensive transcriptional networks of mosquito genes that are expressed in modular manners in response to DENV infection, and indicated that successfully defending against viral infection requires more elaborate gene networks than hosting the virus. These likely play important roles in the global-cross talk among the mosquito host factors during the critical early DENV infection periods that trigger the appropriate host action in susceptible vs. refractory mosquitoes.

摘要

背景

埃及伊蚊是登革病毒(DENV)感染人类的主要媒介,而 DENV 是全球大部分亚热带和热带地区最重要的虫媒病毒。感染 DENV 后的早期阶段定义了决定病毒在蚊子中成功或失败建立感染的关键细胞过程。

方法和结果

为了鉴定参与这些过程的基因,我们在 DENV 挑战后两个关键的早期时间点,对易感和抗性埃及伊蚊品系进行了全基因组转录组谱分析。在易感株中,对 DENV 感染呈协调反应的基因主要聚集在一个特定的表达模块中,而在抗性株中,它们分布在四个不同的模块中。在全球转录网络中,易感反应模块表现出与能量代谢和 DNA 复制相关基因的显著偏向表达,而抗性反应模块则表现出不同代谢途径基因(包括细胞色素 P450 和 DDT[1,1,1-三氯-2,2-双(4-氯苯基)乙烷]降解基因)和与细胞生长和死亡相关基因的偏向表达。在易感和抗性蚊子中都观察到一个协调表达的共同核心基因集,包括与 Wnt(Wnt:无翅[wg]和整合 1[int1]途径)、MAPK(丝裂原激活蛋白激酶)、mTOR(哺乳动物雷帕霉素靶蛋白)和 JAK-STAT(Janus 激酶-信号转导和转录激活因子)途径相关的基因。

结论

我们的数据揭示了蚊子基因的广泛转录网络,这些基因以模块化的方式表达,以响应 DENV 感染,并表明抵御病毒感染需要比宿主病毒更精细的基因网络。这些基因可能在 DENV 感染早期的关键时期,在蚊子宿主因素之间的全球相互作用中发挥重要作用,从而在易感和抗性蚊子中触发适当的宿主反应。

相似文献

1
Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection.
PLoS Negl Trop Dis. 2011 Nov;5(11):e1385. doi: 10.1371/journal.pntd.0001385. Epub 2011 Nov 15.
3
Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus infection.
Infect Genet Evol. 2012 Oct;12(7):1413-8. doi: 10.1016/j.meegid.2012.04.027. Epub 2012 May 3.
4
Influence of mosquito genotype on transcriptional response to dengue virus infection.
Funct Integr Genomics. 2014 Sep;14(3):581-9. doi: 10.1007/s10142-014-0376-1. Epub 2014 May 6.
6
Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti.
Insect Biochem Mol Biol. 2016 Sep;76:70-83. doi: 10.1016/j.ibmb.2016.07.004. Epub 2016 Jul 12.
7
8
Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus.
PLoS Negl Trop Dis. 2017 Jan 12;11(1):e0005187. doi: 10.1371/journal.pntd.0005187. eCollection 2017 Jan.
9
A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection.
Biochim Biophys Acta. 2016 Sep;1860(9):1898-909. doi: 10.1016/j.bbagen.2016.05.033. Epub 2016 May 27.

引用本文的文献

1
The Hsf1-sHsp cascade has pan-antiviral activity in mosquito cells.
Commun Biol. 2025 Jan 25;8(1):123. doi: 10.1038/s42003-024-07435-4.
2
Machine learning-based gene expression biomarkers to distinguish Zika and Dengue virus infections: implications for diagnosis.
Virusdisease. 2024 Sep;35(3):446-461. doi: 10.1007/s13337-024-00885-8. Epub 2024 Aug 8.
3
Zika virus exists in enterocytes and enteroendocrine cells of the midgut.
iScience. 2024 Jun 22;27(7):110353. doi: 10.1016/j.isci.2024.110353. eCollection 2024 Jul 19.
4
Bloodmeals fuel dengue virus replication in the female mosquito .
J Virol. 2024 Jul 23;98(7):e0070124. doi: 10.1128/jvi.00701-24. Epub 2024 Jun 18.
5
Immune Reactions of Vector Insects to Parasites and Pathogens.
Microorganisms. 2024 Mar 12;12(3):568. doi: 10.3390/microorganisms12030568.
6
Controlling arbovirus infection: high-throughput transcriptome and proteome insights.
Front Microbiol. 2024 Feb 13;15:1330303. doi: 10.3389/fmicb.2024.1330303. eCollection 2024.
9
Mechanism of Immune Evasion in Mosquito-Borne Diseases.
Pathogens. 2023 Apr 23;12(5):635. doi: 10.3390/pathogens12050635.
10
Rift Valley Fever Virus Primes Immune Responses in Cells.
Pathogens. 2023 Apr 6;12(4):563. doi: 10.3390/pathogens12040563.

本文引用的文献

1
Response of the mosquito protein interaction network to dengue infection.
BMC Genomics. 2010 Jun 16;11:380. doi: 10.1186/1471-2164-11-380.
2
An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17841-6. doi: 10.1073/pnas.0905006106. Epub 2009 Oct 1.
3
Alternative infectious entry pathways for dengue virus serotypes into mammalian cells.
Cell Microbiol. 2009 Oct;11(10):1533-49. doi: 10.1111/j.1462-5822.2009.01345.x. Epub 2009 Jun 11.
4
Discovery of insect and human dengue virus host factors.
Nature. 2009 Apr 23;458(7241):1047-50. doi: 10.1038/nature07967.
6
Characterization of dengue virus entry into HepG2 cells.
J Biomed Sci. 2009 Feb 4;16(1):17. doi: 10.1186/1423-0127-16-17.
7
Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells.
PLoS Pathog. 2008 Dec;4(12):e1000244. doi: 10.1371/journal.ppat.1000244. Epub 2008 Dec 19.
8
Dramatic caspase-dependent apoptosis in antibody-enhanced dengue virus infection of human mast cells.
J Leukoc Biol. 2009 Jan;85(1):71-80. doi: 10.1189/jlb.0308167. Epub 2008 Sep 22.
9
Dengue reborn: widespread resurgence of a resilient vector.
Environ Health Perspect. 2008 Sep;116(9):A382-8. doi: 10.1289/ehp.116-a382.
10
STAT92E is a positive regulator of Drosophila inhibitor of apoptosis 1 (DIAP/1) and protects against radiation-induced apoptosis.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13805-10. doi: 10.1073/pnas.0806291105. Epub 2008 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验