Laboratory of Atherosclerosis, Division of Cardiovascular Science, CIMA, Avenida Pio XII, 55, 31008 Pamplona, Navarra, Spain.
Circulation. 2011 Dec 20;124(25):2909-19. doi: 10.1161/CIRCULATIONAHA.111.047100. Epub 2011 Nov 21.
The fibrinolytic and matrix metalloproteinase (MMP) systems cooperate in thrombus dissolution and extracellular matrix proteolysis. The plasminogen/plasmin system activates MMPs, and some MMPs have been involved in the dissolution of fibrin by targeting fibrin(ogen) directly or by collaborating with plasmin. MMP-10 has been implicated in inflammatory/thrombotic processes and vascular integrity, but whether MMP-10 could have a profibrinolytic effect and represent a promising thrombolytic agent is unknown.
The effect of MMP-10 on fibrinolysis was studied in vitro and in vivo, in MMP-10-null mice (Mmp10(-/-)), with the use of 2 different murine models of arterial thrombosis: laser-induced carotid injury and ischemic stroke. In vitro, we showed that MMP-10 was capable of enhancing tissue plasminogen activator-induced fibrinolysis via a thrombin-activatable fibrinolysis inhibitor inactivation-mediated mechanism. In vivo, delayed fibrinolysis observed after photochemical carotid injury in Mmp10(-/-) mice was reversed by active recombinant human MMP-10. In a thrombin-induced stroke model, the reperfusion and the infarct size in sham or tissue plasminogen activator-treated animals were severely impaired in Mmp10(-/-) mice. In this model, administration of active MMP-10 to wild-type animals significantly reduced blood reperfusion time and infarct size to the same extent as tissue plasminogen activator and was associated with shorter bleeding time and no intracranial hemorrhage. This effect was not observed in thrombin-activatable fibrinolysis inhibitor-deficient mice, suggesting thrombin-activatable fibrinolysis inhibitor inactivation as one of the mechanisms involved in the MMP-10 profibrinolytic effect.
A novel profibrinolytic role for MMP-10 in experimental ischemic stroke is described, opening new pathways for innovative fibrinolytic strategies in arterial thrombosis.
纤维蛋白溶解和基质金属蛋白酶(MMP)系统在血栓溶解和细胞外基质蛋白水解中协同作用。纤溶酶原/纤溶酶系统激活 MMPs,一些 MMPs 直接靶向纤维蛋白(原)或与纤溶酶协同作用,参与纤维蛋白的溶解。MMP-10 已被牵连到炎症/血栓形成过程和血管完整性中,但 MMP-10 是否具有促纤维蛋白溶解作用并代表有前途的溶栓剂尚不清楚。
在体外和体内,在 MMP-10 基因敲除小鼠(Mmp10(-/-))中,使用 2 种不同的动脉血栓形成的小鼠模型:激光诱导的颈动脉损伤和缺血性中风,研究了 MMP-10 对纤维蛋白溶解的影响。在体外,我们表明 MMP-10 能够通过凝血酶激活的纤维蛋白溶解抑制剂失活介导的机制增强组织型纤溶酶原激活剂诱导的纤维蛋白溶解。在体内,Mmp10(-/-)小鼠光化学颈动脉损伤后观察到的纤维蛋白溶解延迟被重组人 MMP-10 逆转。在凝血酶诱导的中风模型中,在 sham 或组织型纤溶酶原激活剂处理的动物中,再灌注和梗死面积在 Mmp10(-/-)小鼠中严重受损。在该模型中,向野生型动物给予活性 MMP-10 可显著缩短血液再灌注时间和梗死面积,与组织型纤溶酶原激活剂相同,并与较短的出血时间和无颅内出血相关。在凝血酶激活的纤维蛋白溶解抑制剂缺陷型小鼠中未观察到这种作用,表明凝血酶激活的纤维蛋白溶解抑制剂失活是 MMP-10 促纤维蛋白溶解作用的机制之一。
描述了 MMP-10 在实验性缺血性中风中的新型促纤维蛋白溶解作用,为动脉血栓形成中的创新纤维蛋白溶解策略开辟了新途径。