Watson Brad W, Meng Lingyao, Fetrow Chris, Qin Yang
Department of Chemistry and Chemical Biology, University of New Mexico, MSC03-2060, 1 UNM, Albuquerque, NM 87131, USA.
Polymers (Basel). 2016 Nov 24;8(12):408. doi: 10.3390/polym8120408.
Nanostructuring organic polymers and organic/inorganic hybrid materials and controlling blend morphologies at the molecular level are the prerequisites for modern electronic devices including biological sensors, light emitting diodes, memory devices and solar cells. To achieve all-around high performance, multiple organic and inorganic entities, each designed for specific functions, are commonly incorporated into a single device. Accurate arrangement of these components is a crucial goal in order to achieve the overall synergistic effects. We describe here a facile methodology of nanostructuring conjugated polymers and inorganic quantum dots into well-ordered core/shell composite nanofibers through cooperation of several orthogonal non-covalent interactions including conjugated polymer crystallization, block copolymer self-assembly and coordination interactions. Our methods provide precise control on the spatial arrangements among the various building blocks that are otherwise incompatible with one another, and should find applications in modern organic electronic devices such as solar cells.
对有机聚合物和有机/无机杂化材料进行纳米结构化,并在分子水平上控制共混形态,是包括生物传感器、发光二极管、存储设备和太阳能电池在内的现代电子器件的先决条件。为了实现全方位的高性能,通常将多个专为特定功能设计的有机和无机实体整合到单个器件中。这些组件的精确排列是实现整体协同效应的关键目标。我们在此描述一种简便的方法,通过共轭聚合物结晶、嵌段共聚物自组装和配位相互作用等几种正交非共价相互作用的协同,将共轭聚合物和无机量子点纳米结构化,形成有序的核/壳复合纳米纤维。我们的方法能够对原本相互不兼容的各种结构单元之间的空间排列进行精确控制,并且应该会在太阳能电池等现代有机电子器件中得到应用。