Suppr超能文献

纠结的拓扑异构酶:细胞如何指挥、管理和利用拓扑异构酶的功能。

All tangled up: how cells direct, manage and exploit topoisomerase function.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.

出版信息

Nat Rev Mol Cell Biol. 2011 Nov 23;12(12):827-41. doi: 10.1038/nrm3228.

Abstract

Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases are frequently linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation and utility as therapeutic targets.

摘要

拓扑异构酶是复杂的分子机器,可调节 DNA 拓扑结构以维持染色体的超结构和完整性。尽管在体外具有独立的活性,但拓扑异构酶经常与更大的途径和系统相关联,这些途径和系统可以解决特定的 DNA 超结构和来自细胞过程的中间产物,例如 DNA 修复、转录、复制和染色体紧缩。拓扑异构酶活性对细胞是不可或缺的,但需要 DNA 链的瞬时断裂。这种特性已被各种外源药物利用,这些药物经常对细胞增殖产生显著的临床益处。尽管已经进行了数十年的研究,但关于拓扑异构酶的细胞功能、调节和作为治疗靶点的应用,仍然有令人惊讶的发现。

相似文献

1
All tangled up: how cells direct, manage and exploit topoisomerase function.
Nat Rev Mol Cell Biol. 2011 Nov 23;12(12):827-41. doi: 10.1038/nrm3228.
2
Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways.
DNA Repair (Amst). 2020 Oct;94:102926. doi: 10.1016/j.dnarep.2020.102926. Epub 2020 Jul 10.
4
Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases.
Annu Rev Biophys Biomol Struct. 2004;33:95-118. doi: 10.1146/annurev.biophys.33.110502.140357.
5
DNA-Topology Simplification by Topoisomerases.
Molecules. 2021 Jun 3;26(11):3375. doi: 10.3390/molecules26113375.
6
Topoisomerases: Resistance versus Sensitivity, How Far We Can Go?
Med Res Rev. 2017 Mar;37(2):404-438. doi: 10.1002/med.21417. Epub 2016 Sep 30.
7
Topoisomerase-mediated chromosomal break repair: an emerging player in many games.
Nat Rev Cancer. 2015 Mar;15(3):137-51. doi: 10.1038/nrc3892. Epub 2015 Feb 19.
8
Topoisomerase assays.
Curr Protoc Pharmacol. 2012 Jun;Chapter 3:Unit 3.3.. doi: 10.1002/0471141755.ph0303s57.
9
Interfacial inhibitors.
Bioorg Med Chem Lett. 2015 Sep 15;25(18):3961-5. doi: 10.1016/j.bmcl.2015.07.032. Epub 2015 Jul 18.
10
DNA binding and Topoisomerase inhibition: How can these mechanisms be explored to design more specific anticancer agents?
Biomed Pharmacother. 2017 Dec;96:1538-1556. doi: 10.1016/j.biopha.2017.11.054. Epub 2017 Nov 22.

引用本文的文献

1
Phenazines contribute to microbiome dynamics by targeting topoisomerase IV.
Nat Microbiol. 2025 Sep 11. doi: 10.1038/s41564-025-02118-0.
2
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria.
Microorganisms. 2025 Aug 1;13(8):1803. doi: 10.3390/microorganisms13081803.
3
Functional interplay between condensin I and topoisomerase Iiα in single-molecule DNA compaction.
Nat Commun. 2025 Aug 6;16(1):7239. doi: 10.1038/s41467-025-62600-5.
5
Bacterial type II topoisomerases cleave DNA in a species-specific manner.
bioRxiv. 2025 Jul 28:2025.07.28.667256. doi: 10.1101/2025.07.28.667256.
6
Unraveling the Role of Topoisomerase 3β (TOP3B) in mRNA Translation and Human Disease.
Wiley Interdiscip Rev RNA. 2025 Jul-Aug;16(4):e70020. doi: 10.1002/wrna.70020.
7
Triphenylphosphonium is an effective targeting moiety for plant mitochondria.
New Phytol. 2025 Sep;247(6):2601-2615. doi: 10.1111/nph.70381. Epub 2025 Jul 21.
8
Substituted Triazole-3,5-Diamine Compounds as Novel Human Topoisomerase III Beta Inhibitors.
Int J Mol Sci. 2025 Jun 27;26(13):6193. doi: 10.3390/ijms26136193.
9
10
Inducing and Monitoring Liquid-Liquid Phase Separation by Type II Topoisomerases.
Methods Mol Biol. 2025;2928:173-185. doi: 10.1007/978-1-0716-4550-5_14.

本文引用的文献

1
Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis.
Genome Dyn Stab. 2008 Jan 1;2:81-123. doi: 10.1007/7050_2007_026.
2
Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I.
Science. 2011 Jun 24;332(6037):1561-4. doi: 10.1126/science.1205016.
3
Replication and segregation of an Escherichia coli chromosome with two replication origins.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):E243-50. doi: 10.1073/pnas.1100874108. Epub 2011 Jun 13.
4
Positive supercoiling of mitotic DNA drives decatenation by topoisomerase II in eukaryotes.
Science. 2011 Mar 11;331(6022):1328-32. doi: 10.1126/science.1201538.
5
Chromosome length influences replication-induced topological stress.
Nature. 2011 Mar 17;471(7338):392-6. doi: 10.1038/nature09791. Epub 2011 Mar 2.
6
Topoisomerase 1 provokes the formation of short deletions in repeated sequences upon high transcription in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):692-7. doi: 10.1073/pnas.1012582108. Epub 2010 Dec 21.
7
Role for topoisomerase 1 in transcription-associated mutagenesis in yeast.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):698-703. doi: 10.1073/pnas.1012363108. Epub 2010 Dec 21.
8
Inhibition of poly (ADP-ribose) polymerase-1 enhances doxorubicin activity against liver cancer cells.
Cancer Lett. 2011 Feb 1;301(1):47-56. doi: 10.1016/j.canlet.2010.10.026. Epub 2010 Nov 19.
9
PIASy-dependent SUMOylation regulates DNA topoisomerase IIalpha activity.
J Cell Biol. 2010 Nov 15;191(4):783-94. doi: 10.1083/jcb.201004033.
10
A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22055-9. doi: 10.1073/pnas.1012938107. Epub 2010 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验