Unité de Neurosciences Information et Complexité, CNRS Gif-sur-Yvette, France.
Front Comput Neurosci. 2011 Nov 15;5:45. doi: 10.3389/fncom.2011.00045. eCollection 2011.
In the hippocampus and the neocortex, the coupling between local field potential (LFP) oscillations and the spiking of single neurons can be highly precise, across neuronal populations and cell types. Spike phase (i.e., the spike time with respect to a reference oscillation) is known to carry reliable information, both with phase-locking behavior and with more complex phase relationships, such as phase precession. How this precision is achieved by neuronal populations, whose membrane properties and total input may be quite heterogeneous, is nevertheless unknown. In this note, we investigate a simple mechanism for learning precise LFP-to-spike coupling in feed-forward networks - the reliable, periodic modulation of presynaptic firing rates during oscillations, coupled with spike-timing dependent plasticity. When oscillations are within the biological range (2-150 Hz), firing rates of the inputs change on a timescale highly relevant to spike-timing dependent plasticity (STDP). Through analytic and computational methods, we find points of stable phase-locking for a neuron with plastic input synapses. These points correspond to precise phase-locking behavior in the feed-forward network. The location of these points depends on the oscillation frequency of the inputs, the STDP time constants, and the balance of potentiation and de-potentiation in the STDP rule. For a given input oscillation, the balance of potentiation and de-potentiation in the STDP rule is the critical parameter that determines the phase at which an output neuron will learn to spike. These findings are robust to changes in intrinsic post-synaptic properties. Finally, we discuss implications of this mechanism for stable learning of spike-timing in the hippocampus.
在海马体和新皮层中,局部场电位 (LFP) 振荡与单个神经元的尖峰之间的耦合可以非常精确,跨越神经元群体和细胞类型。相位锁定行为和更复杂的相位关系(例如相位超前)都表明,尖峰相位(即相对于参考振荡的尖峰时间)携带可靠的信息。然而,神经元群体如何实现这种精度,尽管其膜特性和总输入可能非常异质,目前尚不清楚。在本说明中,我们研究了一种用于学习前馈网络中精确 LFP 到尖峰耦合的简单机制 - 在振荡期间可靠地、周期性地调制突触前放电率,同时结合尖峰时间依赖性可塑性。当振荡处于生物范围内(2-150 Hz)时,输入的放电率会在与尖峰时间依赖性可塑性(STDP)高度相关的时间尺度上发生变化。通过分析和计算方法,我们找到了具有可塑性输入突触的神经元的稳定锁相点。这些点对应于前馈网络中的精确锁相行为。这些点的位置取决于输入的振荡频率、STDP 时间常数以及 STDP 规则中的增强和去增强平衡。对于给定的输入振荡,STDP 规则中的增强和去增强平衡是决定输出神经元将学习何时尖峰的关键参数。这些发现对内在突触后特性的变化具有鲁棒性。最后,我们讨论了这种机制对海马体中尖峰时间稳定学习的影响。