Harvey Christopher D, Collman Forrest, Dombeck Daniel A, Tank David W
Princeton Neuroscience Institute, New Jersey 08544, USA.
Nature. 2009 Oct 15;461(7266):941-6. doi: 10.1038/nature08499.
Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, here we measured the intracellular dynamics of place cells by combining in vivo whole-cell recordings with a virtual-reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviours. Robust place-cell activity was present during movement along a virtual linear track. From whole-cell recordings, we identified three subthreshold signatures of place fields: an asymmetric ramp-like depolarization of the baseline membrane potential, an increase in the amplitude of intracellular theta oscillations, and a phase precession of the intracellular theta oscillation relative to the extracellularly recorded theta rhythm. These intracellular dynamics underlie the primary features of place-cell rate and temporal codes. The virtual-reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation.
海马体位置细胞通过速率编码和时间编码来编码空间信息。为了研究海马体编码背后的机制,我们在此通过将体内全细胞记录与虚拟现实系统相结合,测量了位置细胞的细胞内动态变化。头部受限的小鼠在球形跑步机上奔跑,与计算机生成的视觉环境相互作用以执行空间行为。在沿着虚拟直线轨道移动期间,存在强烈的位置细胞活动。从全细胞记录中,我们识别出位置野的三个阈下特征:基线膜电位的不对称斜坡状去极化、细胞内θ振荡幅度的增加以及细胞内θ振荡相对于细胞外记录的θ节律的相位进动。这些细胞内动态变化是位置细胞速率编码和时间编码的主要特征的基础。这里开发的虚拟现实系统将为研究导航背后的神经回路提供新的实验方法。