Suppr超能文献

用于非显示应用的MicroLED/LED电光集成技术。

MicroLED/LED electro-optical integration techniques for non-display applications.

作者信息

Kumar V, Kymissis I

机构信息

Department of Electrical Engineering, Columbia University, New York, New York 10027, USA.

出版信息

Appl Phys Rev. 2023 Jun;10(2):021306. doi: 10.1063/5.0125103.

Abstract

MicroLEDs offer an extraordinary combination of high luminance, high energy efficiency, low cost, and long lifetime. These characteristics are highly desirable in various applications, but their usage has, to date, been primarily focused toward next-generation display technologies. Applications of microLEDs in other technologies, such as projector systems, computational imaging, communication systems, or neural stimulation, have been limited. In non-display applications which use microLEDs as light sources, modifications in key electrical and optical characteristics such as external efficiency, output beam shape, modulation bandwidth, light output power, and emission wavelengths are often needed for optimum performance. A number of advanced fabrication and processing techniques have been used to achieve these electro-optical characteristics in microLEDs. In this article, we review the non-display application areas of the microLEDs, the distinct opto-electrical characteristics required for these applications, and techniques that integrate the optical and electrical components on the microLEDs to improve system-level efficacy and performance.

摘要

微型发光二极管(MicroLEDs)具备高亮度、高能效、低成本和长寿命等非凡特性组合。这些特性在各种应用中都非常理想,但迄今为止,它们的应用主要集中在下一代显示技术上。微型发光二极管在其他技术中的应用,如投影系统、计算成像、通信系统或神经刺激等,一直较为有限。在将微型发光二极管用作光源的非显示应用中,通常需要对关键的电学和光学特性进行调整,如外部效率、输出光束形状、调制带宽、光输出功率和发射波长,以实现最佳性能。已经采用了许多先进的制造和加工技术来实现微型发光二极管的这些电光特性。在本文中,我们回顾了微型发光二极管的非显示应用领域、这些应用所需的独特光电特性,以及在微型发光二极管上集成光学和电气组件以提高系统级效率和性能的技术。

相似文献

本文引用的文献

5
Review of recent advances in inorganic photoresists.无机光刻胶的最新进展综述。
RSC Adv. 2020 Feb 28;10(14):8385-8395. doi: 10.1039/c9ra08977b. eCollection 2020 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验