Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-9202, USA.
Traffic. 2012 Mar;13(3):468-82. doi: 10.1111/j.1600-0854.2011.01314.x. Epub 2012 Jan 8.
The multivesicular body (MVB) pathway delivers membrane proteins to the lumen of the vacuole/lysosome for degradation. The resulting amino acids are transported to the cytoplasm for reuse in protein synthesis. Our study shows that this amino acid recycling system plays an essential role in the adaptation of cells to starvation conditions. Cells respond to amino acid starvation by upregulating both endocytosis and the MVB pathway, thereby providing amino acids through increased protein turnover. Our data suggest that increased Rsp5-dependent ubiquitination of membrane proteins and a drop in Ist1 levels, a negative regulator of endosomal sorting complex required for transport (ESCRT) activity, cause this response. Furthermore, we found that target of rapamycin complex 1 (TORC1) and a second, unknown nutrient-sensing system are responsible for the starvation-induced protein turnover. Together, the data indicate that protein synthesis and turnover are linked by a common regulatory system that ensures adaptation and survival under nutrient-stress conditions.
多泡体(MVB)途径将膜蛋白递送至液泡/溶酶体的腔室中进行降解。产生的氨基酸被运送到细胞质中,用于蛋白质合成的再利用。我们的研究表明,这种氨基酸回收系统在细胞适应饥饿条件中起着至关重要的作用。细胞通过上调内吞作用和 MVB 途径来响应氨基酸饥饿,从而通过增加蛋白质周转率提供氨基酸。我们的数据表明,Rsp5 依赖性膜蛋白泛素化增加和 Ist1 水平下降(内体分选复合物必需的运输的负调节剂)导致了这种反应。此外,我们发现雷帕霉素复合物 1(TORC1)和第二个未知的营养感应系统负责饥饿诱导的蛋白质周转率。总之,这些数据表明,蛋白质合成和周转通过一个共同的调节系统联系在一起,该系统确保了在营养压力条件下的适应和生存。