Suppr超能文献

网络社区结构中种群差异的发现:新方法及其在精神分裂症脑功能网络中的应用。

The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia.

机构信息

Behavioural & Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, UK.

出版信息

Neuroimage. 2012 Feb 15;59(4):3889-900. doi: 10.1016/j.neuroimage.2011.11.035. Epub 2011 Nov 18.

Abstract

The modular organization of the brain network can vary in two fundamental ways. The amount of inter- versus intra-modular connections between network nodes can be altered, or the community structure itself can be perturbed, in terms of which nodes belong to which modules (or communities). Alterations have previously been reported in modularity, which is a function of the proportion of intra-modular edges over all modules in the network. For example, we have reported that modularity is decreased in functional brain networks in schizophrenia: There are proportionally more inter-modular edges and fewer intra-modular edges. However, despite numerous and increasing studies of brain modular organization, it is not known how to test for differences in the community structure, i.e., the assignment of regional nodes to specific modules. Here, we introduce a method based on the normalized mutual information between pairs of modular networks to show that the community structure of the brain network is significantly altered in schizophrenia, using resting-state fMRI in 19 participants with childhood-onset schizophrenia and 20 healthy participants. We also develop tools to show which specific nodes (or brain regions) have significantly different modular communities between groups, a subset that includes right insular and perisylvian cortical regions. The methods that we propose are broadly applicable to other experimental contexts, both in neuroimaging and other areas of network science.

摘要

大脑网络的模块化组织可以通过两种基本方式发生变化。可以改变网络节点之间的模块内连接与模块间连接的数量,或者改变模块(或社区)所属节点的社区结构本身。先前已经报告过模块性发生了改变,模块性是网络中所有模块内边缘的比例的函数。例如,我们已经报告过精神分裂症患者的功能性大脑网络的模块性降低:模块间的边缘比例增加,而模块内的边缘比例减少。然而,尽管对大脑模块化组织进行了大量且不断增加的研究,但尚不清楚如何测试社区结构(即区域节点到特定模块的分配)的差异。在这里,我们引入了一种基于成对模块化网络之间的归一化互信息的方法,使用 19 名儿童期发病的精神分裂症患者和 20 名健康参与者的静息态 fMRI 来表明精神分裂症患者大脑网络的社区结构发生了显著改变。我们还开发了工具来显示组间特定节点(或大脑区域)的模块化社区有显著差异,其中包括右侧脑岛和周围大脑皮质区域。我们提出的方法广泛适用于神经影像学和网络科学的其他领域的其他实验环境。

相似文献

引用本文的文献

本文引用的文献

3
Concepts and principles in the analysis of brain networks.脑网络分析中的概念和原理。
Ann N Y Acad Sci. 2011 Apr;1224:126-146. doi: 10.1111/j.1749-6632.2010.05947.x.
5
The non-random brain: efficiency, economy, and complex dynamics.非随机大脑:效率、经济性和复杂动力学。
Front Comput Neurosci. 2011 Feb 8;5:5. doi: 10.3389/fncom.2011.00005. eCollection 2011.
8
Modular and hierarchically modular organization of brain networks.大脑网络的模块化和层次模块化组织。
Front Neurosci. 2010 Dec 8;4:200. doi: 10.3389/fnins.2010.00200. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验