Suppr超能文献

通过模拟咳嗽使N95过滤式面罩呼吸器中的MS2噬菌体再次气溶胶化。

Reaerosolization of MS2 bacteriophage from an N95 filtering facepiece respirator by simulated coughing.

作者信息

Fisher Edward M, Richardson Aaron W, Harpest Shannon D, Hofacre Kent C, Shaffer Ronald E

机构信息

National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, PA 15236, USA.

出版信息

Ann Occup Hyg. 2012 Apr;56(3):315-25. doi: 10.1093/annhyg/mer101. Epub 2011 Nov 29.

Abstract

The supply of N95 filtering facepiece respirators (FFRs) may not be adequate to match demand during a pandemic outbreak. One possible strategy to maintain supplies in healthcare settings is to extend FFR use for multiple patient encounters; however, contaminated FFRs may serve as a source for the airborne transmission of virus particles. In this study, reaerosolization of virus particles from contaminated FFRs was examined using bacteriophage MS2 as a surrogate for airborne pathogenic viruses. MS2 was applied to FFRs as droplets or droplet nuclei. A simulated cough (370 l min(-1) peak flow) provided reverse airflow through the contaminated FFR. The number and size of the reaerosolized particles were measured using gelatin filters and an Andersen Cascade Impactor (ACI). Two droplet nuclei challenges produced higher percentages of reaerosolized particles (0.21 and 0.08%) than a droplet challenge (<0.0001%). Overall, the ACI-determined size distribution of the reaerosolized particles was larger than the characterized loading virus aerosol. This study demonstrates that only a small percentage of viable MS2 viruses was reaerosolized from FFRs by reverse airflow under the conditions evaluated, suggesting that the risks of exposure due to reaerosolization associated with extended use can be considered negligible for most respiratory viruses. However, risk assessments should be updated as new viruses emerge and better workplace exposure data becomes available.

摘要

在大流行爆发期间,N95过滤式面罩呼吸器(FFR)的供应可能不足以满足需求。在医疗机构中维持供应的一种可能策略是延长FFR在多次患者接触中的使用;然而,受污染的FFR可能成为病毒颗粒空气传播的来源。在本研究中,使用噬菌体MS2作为空气传播致病病毒的替代物,检测了受污染FFR中病毒颗粒的再气溶胶化情况。将MS2以液滴或液滴核的形式应用于FFR。模拟咳嗽(峰值流量370 l min⁻¹)为通过受污染FFR的反向气流提供动力。使用明胶过滤器和安德森级联撞击器(ACI)测量再气溶胶化颗粒的数量和大小。两次液滴核挑战产生的再气溶胶化颗粒百分比(0.21%和0.08%)高于液滴挑战(<0.0001%)。总体而言,ACI测定的再气溶胶化颗粒的大小分布大于特征性负载病毒气溶胶。本研究表明,在评估的条件下,通过反向气流从FFR中再气溶胶化的存活MS2病毒仅占一小部分,这表明对于大多数呼吸道病毒而言,与延长使用相关的再气溶胶化暴露风险可被视为可忽略不计。然而,随着新病毒的出现和更好的工作场所暴露数据的获得,风险评估应予以更新。

相似文献

1
Reaerosolization of MS2 bacteriophage from an N95 filtering facepiece respirator by simulated coughing.
Ann Occup Hyg. 2012 Apr;56(3):315-25. doi: 10.1093/annhyg/mer101. Epub 2011 Nov 29.
2
Performance of N95 respirators: reaerosolization of bacteria and solid particles.
Am Ind Hyg Assoc J. 1997 Dec;58(12):876-80. doi: 10.1080/15428119791012216.
4
Respirator Performance against Nanoparticles under Simulated Workplace Activities.
Ann Occup Hyg. 2015 Oct;59(8):1012-21. doi: 10.1093/annhyg/mev042. Epub 2015 Jul 15.
5
Performance of N95 FFRs Against Combustion and NaCl Aerosols in Dry and Moderately Humid Air: Manikin-based Study.
Ann Occup Hyg. 2016 Jul;60(6):748-60. doi: 10.1093/annhyg/mew019. Epub 2016 Apr 19.
7
Viable viral efficiency of N95 and P100 respirator filters at constant and cyclic flow.
J Occup Environ Hyg. 2013;10(10):564-72. doi: 10.1080/15459624.2013.818228.
8
10
Evaluation of five decontamination methods for filtering facepiece respirators.
Ann Occup Hyg. 2009 Nov;53(8):815-27. doi: 10.1093/annhyg/mep070. Epub 2009 Oct 4.

引用本文的文献

1
Effect of Face Masking on Transmission of SARS-CoV-2.
Adv Exp Med Biol. 2024;1458:175-199. doi: 10.1007/978-3-031-61943-4_12.
2
The time has come to protect healthcare workers and patients from aerosol transmissible disease.
Front Public Health. 2024 Apr 23;12:1378567. doi: 10.3389/fpubh.2024.1378567. eCollection 2024.
3
What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues.
Polymers (Basel). 2021 Nov 28;13(23):4165. doi: 10.3390/polym13234165.
4
Reusing and/or reprocessing the N95 face respirator mask or equivalent: An integrative review.
Rev Lat Am Enfermagem. 2021 Oct 29;29:e3492. doi: 10.1590/1518-8345.5135.3492. eCollection 2021.
5
Modeling the efficiency of UV at 254 nm for disinfecting the different layers within N95 respirators.
J Biophotonics. 2021 Oct;14(10):e202100135. doi: 10.1002/jbio.202100135. Epub 2021 Jul 11.
6
Evaluation of 2 Ultraviolet-C Light Boxes for Decontamination of N95 Respirators.
Pathog Immun. 2021 Jun 5;6(1):104-115. doi: 10.20411/pai.v6i1.432. eCollection 2021.
7
Analysis of Taiwan's Mask Collection and Plan Evasion during the COVID-19 Pandemic.
Int J Environ Res Public Health. 2021 Apr 14;18(8):4137. doi: 10.3390/ijerph18084137.
8
Principles and practice for SARS-CoV-2 decontamination of N95 masks with UV-C.
Biophys J. 2021 Jul 20;120(14):2927-2942. doi: 10.1016/j.bpj.2021.02.039. Epub 2021 Mar 4.
9
Viruses such as SARS-CoV-2 can be partially shielded from UV radiation when in particles generated by sneezing or coughing: Numerical simulations.
J Quant Spectrosc Radiat Transf. 2021 Mar;262:107489. doi: 10.1016/j.jqsrt.2020.107489. Epub 2020 Dec 24.
10
A Review of Decontamination Methods for Filtering Facepiece Respirators.
J Int Soc Respir Prot. 2020;37(2):71-86. Epub 2020 Oct 9.

本文引用的文献

1
Method for contamination of filtering facepiece respirators by deposition of MS2 viral aerosols.
J Aerosol Sci. 2010 Oct;41(10):944-952. doi: 10.1016/j.jaerosci.2010.07.003. Epub 2010 Jul 8.
3
Transmission of communicable respiratory infections and facemasks.
J Multidiscip Healthc. 2008 May 1;1:17-27. doi: 10.2147/jmdh.s3019.
5
Particle release from respirators, part I: determination of the effect of particle size, drop height, and load.
J Occup Environ Hyg. 2011 Jan;8(1):1-9. doi: 10.1080/15459624.2011.534975.
6
A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators.
J Appl Microbiol. 2011 Jan;110(1):287-95. doi: 10.1111/j.1365-2672.2010.04881.x. Epub 2010 Nov 4.
7
Analysis of residual chemicals on filtering facepiece respirators after decontamination.
J Occup Environ Hyg. 2010 Aug;7(8):437-45. doi: 10.1080/15459624.2010.484794.
10
Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases.
Indoor Air. 2010 Feb;20(1):2-16. doi: 10.1111/j.1600-0668.2009.00621.x. Epub 2009 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验