Department of Biomedical Engineering, Helwan University, Helwan 11421, Egypt.
IEEE Trans Biomed Eng. 2013 Mar;60(3):781-91. doi: 10.1109/TBME.2011.2177498. Epub 2011 Nov 24.
The field of retinal prosthesis has been steadily developing over the last two decades. Despite the many obstacles, clinical trials for electronic approaches are in progress and already demonstrating some success. Optogenetic/optoelectronic retinal prosthesis may prove to have even greater capabilities. Although resolutions are now moving beyond recognition of simple shapes, it will nevertheless be poor compared to normal vision. If we define the aim to be to return mobility and natural scene recognition to the patient, it is important to maximize the useful visual information we attempt to transfer. In this paper, we highlight a method to simplify the scene, perform spatial image compression, and then apply spike coding. We then show the potential for translation on standard consumer processors. The algorithms are applicable to all forms of visual prosthesis, but we particularly focus on optogenetic approaches.
视网膜假体领域在过去的二十年中稳步发展。尽管存在许多障碍,但电子方法的临床试验正在进行,并已经取得了一些成功。光遗传学/光电视网膜假体可能具有更大的潜力。尽管分辨率现在已经超过了对简单形状的识别,但与正常视力相比仍然较差。如果我们将目标定义为将运动能力和自然场景识别恢复给患者,那么最大限度地利用我们试图传输的有用视觉信息就很重要。在本文中,我们强调了一种简化场景、进行空间图像压缩然后应用尖峰编码的方法。然后,我们展示了在标准消费者处理器上进行转换的潜力。这些算法适用于所有形式的视觉假体,但我们特别关注光遗传学方法。