Suppr超能文献

用于视觉假体的二进制和双极边缘图像的目标识别比较。

Comparing object recognition from binary and bipolar edge images for visual prostheses.

作者信息

Jung Jae-Hyun, Pu Tian, Peli Eli

机构信息

Harvard Medical School, Massachusetts Eye and Ear, Department of Ophthalmology, Schepens Eye Research Institute, 20 Staniford Street, Boston, Massachusetts 02114, United States.

University of Electronic Science and Technology of China, School of Optoelectronic Information, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China.

出版信息

J Electron Imaging. 2016 Nov;25(6). doi: 10.1117/1.JEI.25.6.061619. Epub 2016 Dec 22.

Abstract

Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition.

摘要

由于视觉假体的显示条件有限,分辨率较低,只有2或3级灰度,因此需要一种有效的表示方法。图像中亮度突然变化产生的边缘携带了物体识别的重要信息。典型的二值(黑白)边缘图像已被用于表示特征以传达重要信息。然而,在背景复杂杂乱的场景中,人类观察者对二值边缘图像的识别率有限,还需要额外的信息。边缘和尖点的极性(灰色背景上的黑色或白色特征)携带重要的附加信息;极性可以从二值边缘图像中缺失的阴影信息提供形状。这种深度信息可以通过使用双极边缘来恢复。我们让26名受试者比较了16幅二值边缘图像和双极边缘图像的物体识别率,以确定双极滤波在具有3级或更多级灰度的视觉假体中的可能影响。双极边缘图像的识别率更高,并且在背景复杂的场景中改善显著。结果还表明,由色素而非形状边界导致的双极边缘的错误阴影形状解释可能会混淆识别。

相似文献

2
Comparing object recognition from binary and bipolar edge features.比较基于二值边缘特征和双极边缘特征的目标识别。
IS&T Int Symp Electron Imaging. 2016;2016. doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-111. Epub 2016 Feb 14.
3
Shape-based recognition of wiry objects.基于形状的线状物体识别。
IEEE Trans Pattern Anal Mach Intell. 2004 Dec;26(12):1537-52. doi: 10.1109/TPAMI.2004.128.
8
Independence of color and luminance edges in natural scenes.自然场景中颜色边缘和亮度边缘的独立性。
Vis Neurosci. 2009 Jan-Feb;26(1):35-49. doi: 10.1017/S0952523808080796. Epub 2009 Jan 20.
10
On the extraction and alignment of image edges.
Spat Vis. 1986;1(3):205-17. doi: 10.1163/156856886x00016.

本文引用的文献

3
Active confocal imaging for visual prostheses.视觉假体的有源共焦成像
Vision Res. 2015 Jun;111(Pt B):182-96. doi: 10.1016/j.visres.2014.10.023. Epub 2014 Nov 3.
8
Performance of visual search tasks from various types of contour information.
J Opt Soc Am A Opt Image Sci Vis. 2013 Mar 1;30(3):392-402. doi: 10.1364/JOSAA.30.000392.
9
Smart image processing system for retinal prosthesis.用于视网膜假体的智能图像处理系统。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:300-3. doi: 10.1109/EMBC.2012.6345928.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验