Suppr超能文献

在紧密上皮细胞的数学模型中,容积激活的氯离子通透性可介导细胞容积调节。

Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium.

作者信息

Strieter J, Stephenson J L, Palmer L G, Weinstein A M

机构信息

Department of Physiology and Biophysics, Cornell University Medical College, New York 10021.

出版信息

J Gen Physiol. 1990 Aug;96(2):319-44. doi: 10.1085/jgp.96.2.319.

Abstract

Cell volume regulation during anisotonic challenge is investigated in a mathematical model of a tight epithelium. The epithelium is represented as compliant cellular and paracellular compartments bounded by mucosal and serosal bathing media. Model variables include the concentrations of Na, K, and Cl, hydrostatic pressure, and electrical potential, and the mass conservation equations have been formulated for both steady-state and time-dependent problems. Ionic conductance is represented by the Goldman constant field equation (Civan, M.M., and R.J. Bookman. 1982. Journal of Membrane Biology. 65:63-80). A basolateral cotransporter of Na, K, and Cl with 1:1:2 stoichiometry (Geck, P., and E. Heinz. 1980. Annals of the New York Academy of Sciences. 341:57-62.) and volume-activated basolateral ion permeabilities are incorporated in the model. MacRobbie and Ussing (1961. Acta Physiologica Scandinavica. 53:348-365.) reported that the cells of frog skin exhibit osmotic swelling followed by a volume regulatory decrease (VRD) when the serosal bath is diluted to half the initial osmolality. Similar regulation is achieved in the model epithelium when both a basolateral cotransporter and a volume-activated Cl permeation path are included. The observed transepithelial potential changes could only be simulated by allowing volume activation of the basolateral K permeation path. The fractional VRD, or shrinkage as percent of initial swelling, is examined as a function of the hypotonic challenge. The fractional VRD increases with increasing osmotic challenge, but eventually declines under the most severe circumstances. This analysis demonstrates that the VRD response depends on the presence of adequate intracellular chloride stores and the volume sensitivity of the chloride channel.

摘要

在紧密上皮组织的数学模型中研究了等渗挑战期间的细胞体积调节。上皮组织被表示为由黏膜和浆膜浴液界定的顺应性细胞和细胞旁隔室。模型变量包括钠、钾和氯的浓度、静水压力和电势,并且已经针对稳态和时间相关问题制定了质量守恒方程。离子电导由戈德曼常数场方程表示(西万,M.M.,和R.J. 布克曼。1982年。《膜生物学杂志》。65:63 - 80)。具有1:1:2化学计量比的钠、钾和氯的基底外侧协同转运体(盖克,P.,和E. 海因茨。1980年。《纽约科学院学报》。341:57 - 62)和体积激活的基底外侧离子通透性被纳入模型。麦克罗比和乌辛(1961年。《生理学斯堪的纳维亚学报》。53:348 - 365)报道,当浆膜浴液稀释至初始渗透压的一半时,蛙皮细胞会出现渗透性肿胀,随后体积调节性减小(VRD)。当同时包含基底外侧协同转运体和体积激活的氯渗透途径时,可以在模型上皮组织中实现类似的调节。只有通过允许基底外侧钾渗透途径的体积激活,才能模拟观察到的跨上皮电位变化。分数VRD,即收缩量占初始肿胀量的百分比,作为低渗挑战的函数进行研究。分数VRD随着渗透挑战的增加而增加,但在最严重的情况下最终会下降。该分析表明,VRD反应取决于细胞内充足的氯储备的存在以及氯通道的体积敏感性。

相似文献

2
A mathematical model of the rabbit cortical collecting tubule.
Am J Physiol. 1992 Dec;263(6 Pt 2):F1063-75. doi: 10.1152/ajprenal.1992.263.6.F1063.
10
Volume regulation of frog skin epithelium.青蛙皮肤上皮的容积调节
Acta Physiol Scand. 1982 Mar;114(3):363-9. doi: 10.1111/j.1748-1716.1982.tb06996.x.

引用本文的文献

1
A Mathematical Model of Aqueous Humor Production and Composition.水液生成和成分的数学模型。
Invest Ophthalmol Vis Sci. 2022 Aug 2;63(9):1. doi: 10.1167/iovs.63.9.1.
4
A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.酿酒酵母中单价阳离子稳态的热力学模型
PLoS Comput Biol. 2016 Jan 27;12(1):e1004703. doi: 10.1371/journal.pcbi.1004703. eCollection 2016 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验