Analytical Chemistry Dept., Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62111, Egypt.
Spectrochim Acta A Mol Biomol Spectrosc. 2012 Feb;86:515-26. doi: 10.1016/j.saa.2011.11.003. Epub 2011 Nov 20.
A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.
建立了支持向量回归(SVR)和人工神经网络(ANNs)多元回归方法之间的比较,展示了每种方法的基本算法,并对它们进行了比较,以指出它们固有的优点和局限性。在本文中,我们将 SVR 与具有和不具有变量选择过程(遗传算法(GA))的 ANN 进行了比较。为了以合理的方式进行比较,我们使用这些方法对盐酸美贝维林和舒必利的混合物进行了稳定性指示的定量分析,作为在存在报道的杂质和降解产物(总共 6 种成分)的情况下的案例研究,这些杂质和降解产物存在于原料药和药物剂型中,通过处理紫外光谱数据。为了进行适当的分析,建立了一个 6 因素 5 水平的实验设计,得到了一个包含不同干扰物种比例的 25 个混合物的训练集。一个由 5 个混合物组成的独立测试集用于验证所建议模型的预测能力。所提出的方法(无 GA 的线性 SVR 和线性 GA-ANN)成功应用于含有盐酸美贝维林和舒必利混合物的药物片剂的分析。结果表明了非线性问题以及 SVR 和 ANN 等模型如何处理它。这些方法表明了所提到的多元校准模型能够解卷积 6 种成分混合物的高度重叠的紫外光谱,同时使用像紫外分光光度计这样便宜且易于处理的仪器。