Suppr超能文献

剪切小组——核糖核酸酶是控制质体基因表达的关键因素。

The cutting crew - ribonucleases are key players in the control of plastid gene expression.

机构信息

Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.

出版信息

J Exp Bot. 2012 Feb;63(4):1663-73. doi: 10.1093/jxb/err401. Epub 2011 Dec 3.

Abstract

Chloroplast biogenesis requires constant adjustment of RNA homeostasis under conditions of on-going developmental and environmental change and its regulation is achieved mainly by post-transcriptional control mechanisms mediated by various nucleus-encoded ribonucleases. More than 180 ribonucleases are annotated in Arabidopsis, but only 17 are predicted to localize to the chloroplast. Although different ribonucleases act at different RNA target sites in vivo, most nucleases that attack RNA are thought to lack intrinsic cleavage specificity and show non-specific activity in vitro. In vivo, specificity is thought to be imposed by auxiliary RNA-binding proteins, including members of the huge pentatricopeptide repeat family, which protect RNAs from non-specific nucleolytic attack by masking otherwise vulnerable sites. RNA stability is also influenced by secondary structure, polyadenylation, and ribosome binding. Ribonucleases may cleave at internal sites (endonucleases) or digest successively from the 5' or 3' end of the polynucleotide chain (exonucleases). In bacteria, RNases act in the maturation of rRNA and tRNA precursors, as well as in initiating the degradation of mRNAs and small non-coding RNAs. Many ribonucleases in the chloroplasts of higher plants possess homologies to their bacterial counterparts, but their precise functions have rarely been described. However, many ribonucleases present in the chloroplast process polycistronic rRNAs, tRNAs, and mRNAs. The resulting production of monocistronic, translationally competent mRNAs may represent an adaptation to the eukaryotic cellular environment. This review provides a basic overview of the current knowledge of RNases in plastids and highlights gaps to stimulate future studies.

摘要

叶绿体生物发生需要在持续的发育和环境变化条件下不断调整 RNA 动态平衡,其调控主要通过各种核编码核糖核酸酶介导的转录后控制机制来实现。在拟南芥中注释了超过 180 种核糖核酸酶,但仅预测有 17 种定位于叶绿体。尽管不同的核糖核酸酶在体内作用于不同的 RNA 靶位,但大多数攻击 RNA 的核酸酶被认为缺乏内在的切割特异性,并且在体外表现出非特异性活性。在体内,特异性被认为是由辅助 RNA 结合蛋白赋予的,包括巨大的五肽重复家族的成员,它们通过掩盖易受攻击的位点来保护 RNA 免受非特异性核裂解攻击。RNA 的稳定性还受到二级结构、多聚腺苷酸化和核糖体结合的影响。核糖核酸酶可以在内部位点切割(内切核酸酶)或从多核苷酸链的 5' 或 3' 端依次消化(外切核酸酶)。在细菌中,RNases 作用于 rRNA 和 tRNA 前体的成熟过程中,以及 mRNAs 和小非编码 RNA 的降解起始。高等植物叶绿体中的许多核糖核酸酶与它们的细菌对应物具有同源性,但它们的确切功能很少被描述。然而,许多存在于叶绿体中的核糖核酸酶处理多顺反子 rRNA、tRNA 和 mRNA。产生单顺反子、翻译能力强的 mRNAs 可能代表了对真核细胞环境的一种适应。本综述提供了关于质体中 RNases 的当前知识的基本概述,并强调了差距以激发未来的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验