Suppr超能文献

用于分析和操作膜的纳米制造。

Nanofabrication for the analysis and manipulation of membranes.

机构信息

Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Ann Biomed Eng. 2012 Jun;40(6):1356-66. doi: 10.1007/s10439-011-0479-y. Epub 2011 Dec 6.

Abstract

Recent advancements and applications of nanofabrication have enabled the characterization and control of biological membranes at submicron scales. This review focuses on the application of nanofabrication towards the nanoscale observing, patterning, sorting, and concentrating membrane components. Membranes on living cells are a necessary component of many fundamental cellular processes that naturally incorporate nanoscale rearrangement of the membrane lipids and proteins. Nanofabrication has advanced these understandings, for example, by providing 30 nm resolution of membrane proteins with metal-enhanced fluorescence at the tip of a scanning probe on fixed cells. Naturally diffusing single molecules at high concentrations on live cells have been observed at 60 nm resolution by confining the fluorescence excitation light through nanoscale metallic apertures. The lateral reorganization on the plasma membrane during membrane-mediated signaling processes has been examined in response to nanoscale variations in the patterning and mobility of the signal-triggering molecules. Further, membrane components have been separated, concentrated, and extracted through on-chip electrophoretic and microfluidic methods. Nanofabrication provides numerous methods for examining and manipulating membranes for both greater understandings of membrane processes as well as for the application of membranes to other biophysical methods.

摘要

最近的纳米制造技术的进步和应用使得能够在亚微米尺度上对生物膜进行特征化和控制。这篇综述重点介绍了纳米制造在纳米级观察、图案化、分选和浓缩膜成分方面的应用。活细胞上的膜是许多基本细胞过程的必要组成部分,这些过程自然会导致膜脂和蛋白质的纳米级重新排列。纳米制造技术通过在固定细胞上的扫描探针尖端提供金属增强荧光的 30nm 分辨率的膜蛋白,从而促进了这些理解。通过纳米级金属孔限制荧光激发光,可以在 60nm 的分辨率下观察到活细胞上高浓度的自然扩散单分子。通过对信号触发分子的图案化和迁移的纳米级变化做出响应,检查了质膜在膜介导的信号转导过程中的侧向重组。此外,通过芯片上电泳和微流控方法,已经分离、浓缩和提取了膜成分。纳米制造为检查和操纵膜提供了许多方法,既可以更深入地了解膜过程,也可以将膜应用于其他生物物理方法。

相似文献

1
Nanofabrication for the analysis and manipulation of membranes.
Ann Biomed Eng. 2012 Jun;40(6):1356-66. doi: 10.1007/s10439-011-0479-y. Epub 2011 Dec 6.
2
Microchip electrophoresis of DNA following preconcentration at photopatterned gel membranes.
Electrophoresis. 2012 Apr;33(8):1236-46. doi: 10.1002/elps.201100675.
3
Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis.
Electrophoresis. 2006 Dec;27(24):4927-34. doi: 10.1002/elps.200600252.
4
Ion-permeable membrane for on-chip preconcentration and separation of cancer marker proteins.
Electrophoresis. 2011 May;32(10):1133-40. doi: 10.1002/elps.201000698.
5
Microfluidic lipid membrane formation on microchamber arrays.
Lab Chip. 2011 Aug 7;11(15):2485-7. doi: 10.1039/c1lc20334g. Epub 2011 Jun 24.
6
A capillary electrophoresis chip with hydrodynamic sample injection for measurements from a continuous sample flow.
Anal Bioanal Chem. 2005 Nov;383(5):733-7. doi: 10.1007/s00216-005-3346-6. Epub 2005 Jun 18.
8
Electrokinetic sorting and collection of fractions for preparative capillary electrophoresis on a chip.
Lab Chip. 2008 May;8(5):801-9. doi: 10.1039/b717785b. Epub 2008 Mar 18.
9
Near-field fluorescence cross-correlation spectroscopy on planar membranes.
ACS Nano. 2014 Jul 22;8(7):7392-404. doi: 10.1021/nn502593k. Epub 2014 Jul 11.

引用本文的文献

1
Formation of biomembrane microarrays with a squeegee-based assembly method.
J Vis Exp. 2014 May 8(87):51501. doi: 10.3791/51501.

本文引用的文献

1
Field-effect detection using phospholipid membranes.
Sci Technol Adv Mater. 2010 Jul 15;11(3):033001. doi: 10.1088/1468-6996/11/3/033001. eCollection 2010 Jun.
2
Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors.
Sensors (Basel). 2011;11(2):1565-88. doi: 10.3390/s110201565. Epub 2011 Jan 27.
3
Measuring the partitioning kinetics of membrane biomolecules using patterned two-phase coexistant lipid bilayers.
J Am Chem Soc. 2011 Oct 5;133(39):15635-43. doi: 10.1021/ja205274g. Epub 2011 Sep 8.
4
Facile assembly of micro- and nanoarrays for sensing with natural cell membranes.
ACS Nano. 2011 Sep 27;5(9):7555-64. doi: 10.1021/nn202554t. Epub 2011 Aug 17.
5
Continuous lipid bilayers derived from cell membranes for spatial molecular manipulation.
J Am Chem Soc. 2011 Sep 7;133(35):14027-32. doi: 10.1021/ja204589a. Epub 2011 Aug 9.
6
Localized surface plasmon resonance sensors.
Chem Rev. 2011 Jun 8;111(6):3828-57. doi: 10.1021/cr100313v.
7
Nanoscale patterning of solid-supported membranes by integrated diffusion barriers.
Langmuir. 2011 Jun 7;27(11):7008-15. doi: 10.1021/la200027e. Epub 2011 Apr 26.
8
Concentrating membrane proteins using asymmetric traps and AC electric fields.
J Am Chem Soc. 2011 May 4;133(17):6521-4. doi: 10.1021/ja2007615. Epub 2011 Apr 8.
9
An array of planar apertures for near-field fluorescence correlation spectroscopy.
Biophys J. 2011 Apr 6;100(7):L34-6. doi: 10.1016/j.bpj.2011.02.034.
10
Advances in nanopatterned and nanostructured supported lipid membranes and their applications.
Biotechnol Genet Eng Rev. 2010;27:185-216. doi: 10.1080/02648725.2010.10648150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验