Suppr超能文献

用于近场荧光相关光谱学的平面光阑阵列。

An array of planar apertures for near-field fluorescence correlation spectroscopy.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.

出版信息

Biophys J. 2011 Apr 6;100(7):L34-6. doi: 10.1016/j.bpj.2011.02.034.

Abstract

We have developed a method of performing near-field fluorescence correlation spectroscopy via an array of planarized circular apertures of 50 nm diameter. This technique provides 1 μs and 60 nm resolution on proximal samples, including live cells, without incorporating a scanning probe or pulsed lasers or requiring penetration of the sample into the aperture. Millions of apertures are created in an array within a thin film of aluminum on a coverslip and planarized to achieve no height distinction between the apertures and the surrounding metal. Supported lipid bilayers and plasma membranes from live cells adhere to the top of this substrate. We performed fluorescence correlation spectroscopy to demonstrate the sub-diffraction-limited illumination with these devices.

摘要

我们开发了一种通过 50nm 直径的平面化圆形孔阵列进行近场荧光相关光谱学的方法。该技术在不引入扫描探针或脉冲激光器或要求样品穿透孔径的情况下,为近距样品(包括活细胞)提供了 1μs 和 60nm 的分辨率。在盖玻片上的铝薄膜内的阵列中创建了数百万个孔,并进行了平面化处理,以使孔和周围金属之间没有高度差异。来自活细胞的支持脂双层和质膜附着在该基底的顶部。我们进行了荧光相关光谱学实验,以证明使用这些器件的亚衍射限制照明。

相似文献

1
An array of planar apertures for near-field fluorescence correlation spectroscopy.
Biophys J. 2011 Apr 6;100(7):L34-6. doi: 10.1016/j.bpj.2011.02.034.
2
Near-field fluorescence cross-correlation spectroscopy on planar membranes.
ACS Nano. 2014 Jul 22;8(7):7392-404. doi: 10.1021/nn502593k. Epub 2014 Jul 11.
3
Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
Biophys J. 2011 Jan 19;100(2):L8-10. doi: 10.1016/j.bpj.2010.12.3690.
4
Circle scanning STED fluorescence correlation spectroscopy to quantify membrane dynamics and compartmentalization.
Methods. 2018 May 1;140-141:188-197. doi: 10.1016/j.ymeth.2017.12.005. Epub 2017 Dec 16.
5
Potentials and pitfalls of inverse fluorescence correlation spectroscopy.
Methods. 2018 May 1;140-141:23-31. doi: 10.1016/j.ymeth.2018.01.005. Epub 2018 Feb 2.
6
Vesicle diffusion close to a membrane: intermembrane interactions measured with fluorescence correlation spectroscopy.
Biophys J. 2008 Dec 15;95(12):5789-97. doi: 10.1529/biophysj.108.128934. Epub 2008 Oct 17.

引用本文的文献

1
Hybrid Plasmonic Nanostructures for Enhanced Single-Molecule Detection Sensitivity.
ACS Nano. 2023 May 9;17(9):8453-8464. doi: 10.1021/acsnano.3c00576. Epub 2023 Apr 3.
3
Correlative nanophotonic approaches to enlighten the nanoscale dynamics of living cell membranes.
Biochem Soc Trans. 2021 Nov 1;49(5):2357-2369. doi: 10.1042/BST20210457.
4
Current approaches to studying membrane organization.
F1000Res. 2015 Nov 30;4. doi: 10.12688/f1000research.6868.1. eCollection 2015.
5
A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics.
Methods. 2015 Oct 15;88:67-75. doi: 10.1016/j.ymeth.2015.06.017. Epub 2015 Jun 27.
6
Near-field fluorescence cross-correlation spectroscopy on planar membranes.
ACS Nano. 2014 Jul 22;8(7):7392-404. doi: 10.1021/nn502593k. Epub 2014 Jul 11.
7
Radiative decay engineering 6: fluorescence on one-dimensional photonic crystals.
Anal Biochem. 2013 Nov 1;442(1):83-96. doi: 10.1016/j.ab.2013.07.021. Epub 2013 Jul 27.
8
Live-cell imaging of single receptor composition using zero-mode waveguide nanostructures.
Nano Lett. 2012 Jul 11;12(7):3690-4. doi: 10.1021/nl301480h. Epub 2012 Jun 8.
9
Nanofabrication for the analysis and manipulation of membranes.
Ann Biomed Eng. 2012 Jun;40(6):1356-66. doi: 10.1007/s10439-011-0479-y. Epub 2011 Dec 6.

本文引用的文献

1
Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
Biophys J. 2011 Jan 19;100(2):L8-10. doi: 10.1016/j.bpj.2010.12.3690.
2
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
3
Direct observation of the nanoscale dynamics of membrane lipids in a living cell.
Nature. 2009 Feb 26;457(7233):1159-62. doi: 10.1038/nature07596. Epub 2008 Dec 21.
4
Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization.
Biophys J. 2007 Feb 1;92(3):913-9. doi: 10.1529/biophysj.106.096586. Epub 2006 Nov 3.
5
Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
EMBO J. 2006 Jul 26;25(14):3245-56. doi: 10.1038/sj.emboj.7601214. Epub 2006 Jul 6.
6
Methods to measure the lateral diffusion of membrane lipids and proteins.
Methods. 2006 Jun;39(2):147-53. doi: 10.1016/j.ymeth.2006.05.008.
7
Zero mode waveguides for single-molecule spectroscopy on lipid membranes.
Biophys J. 2006 May 1;90(9):3288-99. doi: 10.1529/biophysj.105.072819. Epub 2006 Feb 3.
9
Anomalous diffusion of proteins due to molecular crowding.
Biophys J. 2005 Nov;89(5):2960-71. doi: 10.1529/biophysj.104.051078. Epub 2005 Aug 19.
10
Fluorescence correlation spectroscopy relates rafts in model and native membranes.
Biophys J. 2004 Aug;87(2):1034-43. doi: 10.1529/biophysj.104.040519.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验