Suppr超能文献

疟疾中红细胞力学和血流的多尺度建模。

Multiscale modeling of red blood cell mechanics and blood flow in malaria.

机构信息

Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA.

出版信息

PLoS Comput Biol. 2011 Dec;7(12):e1002270. doi: 10.1371/journal.pcbi.1002270. Epub 2011 Dec 1.

Abstract

Red blood cells (RBCs) infected by a Plasmodium parasite in malaria may lose their membrane deformability with a relative membrane stiffening more than ten-fold in comparison with healthy RBCs leading to potential capillary occlusions. Moreover, infected RBCs are able to adhere to other healthy and parasitized cells and to the vascular endothelium resulting in a substantial disruption of normal blood circulation. In the present work, we simulate infected RBCs in malaria using a multiscale RBC model based on the dissipative particle dynamics method, coupling scales at the sub-cellular level with scales at the vessel size. Our objective is to conduct a full validation of the RBC model with a diverse set of experimental data, including temperature dependence, and to identify the limitations of this purely mechanistic model. The simulated elastic deformations of parasitized RBCs match those obtained in optical-tweezers experiments for different stages of intra-erythrocytic parasite development. The rheological properties of RBCs in malaria are compared with those obtained by optical magnetic twisting cytometry and by monitoring membrane fluctuations at room, physiological, and febrile temperatures. We also study the dynamics of infected RBCs in Poiseuille flow in comparison with healthy cells and present validated bulk viscosity predictions of malaria-infected blood for a wide range of parasitemia levels (percentage of infected RBCs with respect to the total number of cells in a unit volume).

摘要

疟原虫感染的红细胞(RBC)可能会失去膜的变形能力,与健康的 RBC 相比,相对膜刚性增加了十倍以上,导致潜在的毛细血管阻塞。此外,感染的 RBC 能够与其他健康的和受感染的细胞以及血管内皮细胞黏附,导致正常血液循环严重中断。在本工作中,我们使用基于耗散粒子动力学方法的多尺度 RBC 模型来模拟疟原虫感染的 RBC,将亚细胞尺度与血管大小尺度进行耦合。我们的目标是用一系列不同的实验数据,包括温度依赖性,对 RBC 模型进行全面验证,并确定这个纯力学模型的局限性。模拟的寄生 RBC 的弹性变形与在不同阶段的红细胞内寄生虫发育的光镊实验获得的结果相匹配。在疟疾中,RBC 的流变性质与通过光学磁扭转细胞术和监测室温、生理和发热温度下的膜波动获得的性质进行了比较。我们还研究了在泊肃叶流中感染 RBC 的动力学,与健康细胞进行了比较,并提出了疟疾感染血液的有效粘度预测,适用于广泛的寄生虫血症水平(单位体积内感染 RBC 相对于总细胞数的百分比)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验