Suppr超能文献

人类脾脏中巨噬细胞吞噬红细胞的生物力学。

Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen.

机构信息

School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia.

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2414437121. doi: 10.1073/pnas.2414437121. Epub 2024 Oct 25.

Abstract

The clearance of senescent and altered red blood cells (RBCs) in the red pulp of the human spleen involves sequential processes of prefiltration, filtration, and postfiltration. While prior work has elucidated the mechanisms underlying the first two processes, biomechanical processes driving the postfiltration phagocytosis of RBCs retained at interendothelial slits (IES) are still poorly understood. We present here a unique computational model of macrophages to study the role of cell biomechanics in modulating the kinetics of phagocytosis of aged and diseased RBCs retained in the spleen. After validating the macrophage model using in vitro phagocytosis experiments, we employ it to probe the mechanisms underlying the kinetics of phagocytosis of mechanically altered RBCs, such as heated RBCs and abnormal RBCs in hereditary spherocytosis (HS) and sickle cell disease (SCD). Our simulations show pronounced deformation of the flexible and healthy RBCs in contrast to minimal shape changes in altered RBCs. Simulations also show that less deformable RBCs are engulfed faster and at lower adhesive strength than flexible RBCs, consistent with our experimental measurements. This efficient sensing and engulfment by macrophages of stiff RBCs retained at IES are expected to temper splenic congestion, a common pathogenic process in malaria, HS, and SCD. Altogether, our combined computational and in vitro experimental studies suggest that mechanical alterations of retained RBCs may suffice to enhance their phagocytosis, thereby adapting the kinetics of their elimination to the kinetics of their mechanical retention, an equilibrium essential for adequately cleaning the splenic filter to preserve its function.

摘要

人类脾脏红髓中衰老和异常红细胞 (RBC) 的清除涉及预过滤、过滤和后过滤的连续过程。虽然先前的工作已经阐明了前两个过程的机制,但驱动滞留在内皮细胞缝隙 (IES) 中的 RBC 后过滤吞噬作用的生物力学过程仍知之甚少。我们在这里提出了一种独特的巨噬细胞计算模型,以研究细胞生物力学在调节滞留在脾脏中的衰老和患病 RBC 吞噬动力学中的作用。在用体外吞噬实验验证巨噬细胞模型后,我们将其用于探究机械改变的 RBC(如加热的 RBC 和遗传性球形红细胞增多症 (HS) 和镰状细胞病 (SCD) 中的异常 RBC)吞噬动力学的机制。我们的模拟显示,与异常 RBC 相比,灵活且健康的 RBC 会发生明显的变形。模拟还表明,与灵活的 RBC 相比,变形能力较差的 RBC 更快、更低的粘附强度被吞噬,这与我们的实验测量结果一致。这种巨噬细胞对 IES 中保留的刚性 RBC 的有效感应和吞噬作用预计会减轻脾脏充血,这是疟疾、HS 和 SCD 中的一种常见致病过程。总之,我们的计算和体外实验联合研究表明,保留的 RBC 的机械改变可能足以增强其吞噬作用,从而使它们的消除动力学适应其机械保留的动力学,这是保持脾脏功能所需的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be46/11536160/028fe500ad38/pnas.2414437121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验