Fujita Y, Freese E
J Biol Chem. 1979 Jun 25;254(12):5340-9.
Fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrase, EC 3.1.3.11) of Bacillus subtilis is a constitutive enzyme that was purified 1000-fold (30% yield) to 80% purity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis where it exhibits a band corresponding to 72,000 daltons. It sediments at 15 S in sucrose density gradients indicating a molecular weight of 380,000, but apparently is very asymmetric. Its activity is irreversibly inactivated in the absence of Mn2+. The enzyme specifically catalyzes dephosphorylation of D-fructose 1,6-bisphosphate with a pH optimum of 8.0. It has 40 to 60% of full activity in the absence of P-enolpyruvate; 20 microM P-enolpyruvate activates it maximally. High concentrations of monovalent cations also activate, NH4+ being most effective. Inhibitors fall into two groups. 1) Nucleoside monophosphates, phosphorylated coenzymes, and polynucleotides inhibit competitively with P-enolpyruvate (AMP (Ki = 2 microM) and dAMP are most effective). 2) The inhibition by nucleoside di- and triphosphates, PPi, and highly phosphorylated nucleotides (guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and adenosine 5'-triphosphate 3'-diphosphate are most effective) is not competed by P-enolpyruvate but is partially overcome by fructose 1,6-bisphosphate (2 microM). Therefore, highly phosphorylated nucleotides (pppGpp and others), produced in over 0.2 mM concentrations upon step down from fast to slow growth rates (Gallant, J., and Lazzarini, R.A. (1976) in Protein Synthesis (McConkey, E.H., ed) Vol. 2, pp. 309-349, Marcel Dekker, Inc., New York), can reduce the conversion rate of fructose 1,6-bisphosphate to fructose 6-phosphate during gluconeogenesis. Comparing glycolytic growth on D-glucose and gluconeogenic growth on L-malate, the intracellular concentrations of fructose 1,6-bisphosphate differ but are both above the Km (13 microM) of the enzyme, those of AMP are similar, whereas those of P-enolpyruvate (0.18 mM versus 1.3 mM) indicate that the enzyme has only 40% of its full activity during glycolysis; nucleotides other than AMP may inhibit additionally. Thus, the futile cycle of fructose 1,6-bisphosphate synthesis and degradation during glycolysis is partially avoided, but the cells are poised for rapid adaptation upon change to gluconeogenic growth conditions.
枯草芽孢杆菌的果糖-1,6-二磷酸酶(D-果糖-1,6-二磷酸1-磷酸水解酶,EC 3.1.3.11)是一种组成型酶,通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳判断,该酶被纯化了1000倍(产率30%),纯度达到80%,在凝胶上呈现出一条对应于72,000道尔顿的条带。它在蔗糖密度梯度中沉降系数为15 S,表明分子量为380,000,但显然非常不对称。在没有Mn2+的情况下,其活性会不可逆地失活。该酶特异性催化D-果糖1,6-二磷酸的去磷酸化反应,最适pH为8.0。在没有磷酸烯醇丙酮酸的情况下,它具有40%至60%的最大活性;20微摩尔的磷酸烯醇丙酮酸可使其最大程度激活。高浓度的单价阳离子也能激活该酶,其中NH4+最为有效。抑制剂分为两类。1)核苷单磷酸、磷酸化辅酶和多核苷酸与磷酸烯醇丙酮酸竞争性抑制(AMP(Ki = 2微摩尔)和dAMP最为有效)。2)核苷二磷酸和三磷酸、焦磷酸以及高度磷酸化的核苷酸(鸟苷5'-三磷酸3'-二磷酸(pppGpp)和腺苷5'-三磷酸3'-二磷酸最为有效)的抑制作用不能被磷酸烯醇丙酮酸竞争,但可被果糖1,6-二磷酸(2微摩尔)部分克服。因此,当从快速生长速率降至缓慢生长速率时(加兰特,J.,和拉扎里尼,R.A.(1976年),《蛋白质合成》(麦康基,E.H.编)第2卷,第309 - 349页,马塞尔·德克尔公司,纽约),产生的浓度超过0.2毫摩尔的高度磷酸化核苷酸(pppGpp等),会降低糖异生过程中果糖1,6-二磷酸向果糖6-磷酸的转化率。比较以D-葡萄糖进行糖酵解生长和以L-苹果酸进行糖异生生长的情况,细胞内果糖1,6-二磷酸的浓度不同,但均高于该酶的Km值(13微摩尔),AMP的浓度相似,而磷酸烯醇丙酮酸的浓度(0.18毫摩尔对1.3毫摩尔)表明该酶在糖酵解过程中仅具有40%的最大活性;除AMP外的其他核苷酸可能会进一步抑制。因此,可以部分避免糖酵解过程中果糖1,6-二磷酸合成与降解的无效循环,但细胞已做好准备,以便在转变为糖异生生长条件时能够快速适应。