Suppr超能文献

足部容积定量 CT 技术和生物学参数评估:一项体模研究。

Assessment of technical and biological parameters of volumetric quantitative computed tomography of the foot: a phantom study.

机构信息

Electronic Radiology Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, Campus Box 8131, St. Louis, MO 63110, USA.

出版信息

Osteoporos Int. 2012 Jul;23(7):1977-85. doi: 10.1007/s00198-011-1851-3. Epub 2011 Dec 7.

Abstract

SUMMARY

Few studies exist for bone densitometry of the whole foot. A phantom study demonstrated the sources of error and necessary controls for accurate quantitative computed tomography of the foot. A loss in bone mineral density (BMD) in the small foot bones may be an early indicator of diabetic foot complications.

INTRODUCTION

Volumetric quantitative computed tomography (vQCT) facilitates the assessment of pedal bone osteopenia, which, in the presence of peripheral neuropathy, may well be an early sign of diabetic foot deformity. To date, sources and magnitudes of error in foot vQCT measurements have not been reported.

METHODS

Foot phantoms were scanned using a 64-slice CT scanner. Energy (in kilovoltage peak), table height, phantom size and orientation, location of "bone" inserts, insert material, location of calibration phantom, and reconstruction kernel were systematically varied during scan acquisition.

RESULTS

Energy (in kilovoltage peak) and distance from the isocenter (table height) resulted in relative attenuation changes from -5% to 22% and -5% to 0%, respectively, and average BMD changes from -0.9% to 0.0% and -1.1% to 0.3%, respectively, compared to a baseline 120-kVp scan performed at the isocenter. BMD compared to manufacturer-specified values ranged, on average, from -2.2% to 0.9%. Phantom size and location of bone-equivalent material inserts resulted in relative attenuation changes of -1.2% to 1.4% compared to the medium-sized phantom.

CONCLUSION

This study demonstrated that variations in kilovoltage peak and table height can be controlled using a calibration phantom scanned at the same energy and height as a foot phantom; however, error due to soft tissue thickness and location of bones within a foot cannot be controlled using a calibration phantom alone.

摘要

摘要

针对整个足部的骨密度测定,目前仅有少量研究。一项体模研究展示了足部定量 CT 扫描的误差来源和必要的控制方法,以确保结果的准确性。足部小骨骨密度的降低可能是糖尿病足并发症的早期指标。

引言

容积定量 CT(vQCT)有助于评估足骨骨质疏松症,在外周神经病变的情况下,这可能是糖尿病足畸形的早期迹象。迄今为止,尚未报道足部 vQCT 测量的误差来源和幅度。

方法

使用 64 层 CT 扫描仪对足模进行扫描。在扫描采集过程中,系统地改变了能量(千伏峰值)、检查床高度、体模大小和方向、“骨”插件的位置、插件材料、校准体模的位置以及重建核。

结果

与在等中心进行的 120kVp 基线扫描相比,能量(千伏峰值)和距等中心的距离(检查床高度)分别导致相对衰减变化为-5%至 22%和-5%至 0%,平均骨密度变化为-0.9%至 0.0%和-1.1%至 0.3%。与制造商规定值相比,骨密度平均偏差范围为-2.2%至 0.9%。体模大小和骨等效材料插件的位置导致与中号体模相比,相对衰减变化为-1.2%至 1.4%。

结论

本研究表明,使用与足部体模在相同能量和高度下扫描的校准体模可以控制千伏峰值和检查床高度的变化;但是,仅使用校准体模无法控制由于软组织厚度和足部骨骼位置引起的误差。

相似文献

1
Assessment of technical and biological parameters of volumetric quantitative computed tomography of the foot: a phantom study.
Osteoporos Int. 2012 Jul;23(7):1977-85. doi: 10.1007/s00198-011-1851-3. Epub 2011 Dec 7.
2
Accuracy of Volumetric Bone Mineral Density Measurement in Weight Bearing, Cone Beam Computed Tomography.
J Clin Densitom. 2024 Jul-Sep;27(3):101504. doi: 10.1016/j.jocd.2024.101504. Epub 2024 Jun 6.
4
The effect of variations in CT scan protocol on femoral finite element failure load assessment using phantomless calibration.
PLoS One. 2022 Mar 18;17(3):e0265524. doi: 10.1371/journal.pone.0265524. eCollection 2022.
5
Volumetric quantitative computed tomography measurement precision for volumes and densities of tarsal and metatarsal bones.
J Clin Densitom. 2011 Jul-Sep;14(3):313-20. doi: 10.1016/j.jocd.2011.05.006. Epub 2011 Jul 1.
6
The impact of CBCT reconstruction and calibration for radiotherapy planning in the head and neck region - a phantom study.
Acta Oncol. 2014 Aug;53(8):1114-24. doi: 10.3109/0284186X.2014.927073. Epub 2014 Jun 30.
8
Establishing error bounds for internal calibration of quantitative computed tomography.
Med Eng Phys. 2024 Feb;124:104109. doi: 10.1016/j.medengphy.2024.104109. Epub 2024 Jan 18.
9
Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision.
Bone. 2017 Oct;103:325-333. doi: 10.1016/j.bone.2017.07.029. Epub 2017 Aug 1.

引用本文的文献

1
Feasibility analysis of low-dose CT with asynchronous quantitative computed tomography to assess vBMD.
BMC Med Imaging. 2023 Oct 6;23(1):149. doi: 10.1186/s12880-023-01115-1.
3
A phantom study comparing low-dose CT physical image quality from five different CT scanners.
Quant Imaging Med Surg. 2022 Jan;12(1):766-780. doi: 10.21037/qims-21-245.
4
Fracture Prediction by Computed Tomography and Finite Element Analysis: Current and Future Perspectives.
Curr Osteoporos Rep. 2018 Aug;16(4):411-422. doi: 10.1007/s11914-018-0450-z.
5
A Candidate Imaging Marker for Early Detection of Charcot Neuroarthropathy.
J Clin Densitom. 2018 Oct-Dec;21(4):485-492. doi: 10.1016/j.jocd.2017.05.008. Epub 2017 Jun 28.
6
Computed tomography derived bone density measurement in the diabetic foot.
J Foot Ankle Res. 2017 Mar 3;10:11. doi: 10.1186/s13047-017-0192-7. eCollection 2017.
7
Persistent inflammation with pedal osteolysis 1year after Charcot neuropathic osteoarthropathy.
J Diabetes Complications. 2017 Jun;31(6):1014-1020. doi: 10.1016/j.jdiacomp.2017.02.005. Epub 2017 Feb 14.
10
Impact of Charcot neuroarthropathy on metatarsal bone mineral density and geometric strength indices.
Bone. 2013 Jan;52(1):407-13. doi: 10.1016/j.bone.2012.10.028. Epub 2012 Oct 29.

本文引用的文献

1
Volumetric quantitative computed tomography measurement precision for volumes and densities of tarsal and metatarsal bones.
J Clin Densitom. 2011 Jul-Sep;14(3):313-20. doi: 10.1016/j.jocd.2011.05.006. Epub 2011 Jul 1.
3
Lower-extremity amputation risk after charcot arthropathy and diabetic foot ulcer.
Diabetes Care. 2010 Jan;33(1):98-100. doi: 10.2337/dc09-1497. Epub 2009 Oct 13.
4
Radiation exposure from musculoskeletal computerized tomographic scans.
J Bone Joint Surg Am. 2009 Aug;91(8):1882-9. doi: 10.2106/JBJS.H.01199.
5
Helical multidetector row quantitative computed tomography (QCT) precision.
Acad Radiol. 2009 Feb;16(2):150-9. doi: 10.1016/j.acra.2008.08.007.
6
Bone mass and architecture determination: state of the art.
Best Pract Res Clin Endocrinol Metab. 2008 Oct;22(5):737-64. doi: 10.1016/j.beem.2008.07.003.
7
Inflammatory osteolysis in diabetic neuropathic (charcot) arthropathies of the foot.
Phys Ther. 2008 Nov;88(11):1399-407. doi: 10.2522/ptj.20080025. Epub 2008 Sep 18.
9
Accurate quantification of width and density of bone structures by computed tomography.
Med Phys. 2007 Oct;34(10):3777-84. doi: 10.1118/1.2769102.
10
Nonoperative treatment of neuro-osteoarthropathy of the foot: do we need new criteria?
Clin Podiatr Med Surg. 2007 Jul;24(3):483-503, ix. doi: 10.1016/j.cpm.2007.03.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验