Suppr超能文献

用于驾驶辅助系统的突发行人横道检测。

Detection of sudden pedestrian crossings for driving assistance systems.

作者信息

Xu Yanwu, Xu Dong, Lin Stephen, Han Tony X, Cao Xianbin, Li Xuelong

机构信息

School of Computer Engineering, Nanyang Technological University, Singapore.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2012 Jun;42(3):729-39. doi: 10.1109/TSMCB.2011.2175726. Epub 2011 Nov 30.

Abstract

In this paper, we study the problem of detecting sudden pedestrian crossings to assist drivers in avoiding accidents. This application has two major requirements: to detect crossing pedestrians as early as possible just as they enter the view of the car-mounted camera and to maintain a false alarm rate as low as possible for practical purposes. Although many current sliding-window-based approaches using various features and classification algorithms have been proposed for image-/video-based pedestrian detection, their performance in terms of accuracy and processing speed falls far short of practical application requirements. To address this problem, we propose a three-level coarse-to-fine video-based framework that detects partially visible pedestrians just as they enter the camera view, with low false alarm rate and high speed. The framework is tested on a new collection of high-resolution videos captured from a moving vehicle and yields a performance better than that of state-of-the-art pedestrian detection while running at a frame rate of 55 fps.

摘要

在本文中,我们研究检测突然出现的行人过马路情况的问题,以帮助驾驶员避免事故。此应用有两个主要要求:在行人刚进入车载摄像头视野时尽早检测到过马路的行人,并出于实际目的将误报率保持在尽可能低的水平。尽管目前已经提出了许多基于滑动窗口的方法,使用各种特征和分类算法来进行基于图像/视频的行人检测,但它们在准确性和处理速度方面的性能远远达不到实际应用的要求。为了解决这个问题,我们提出了一个基于视频的三级由粗到精的框架,该框架能在行人刚进入摄像头视野时检测到部分可见的行人,且误报率低、速度快。该框架在从移动车辆上捕获的一组新的高分辨率视频上进行了测试,在以55帧每秒的帧率运行时,其性能优于当前最先进的行人检测方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验