IQFR-CSIC, Serrano 119, 28006 Madrid, Spain.
ACS Nano. 2012 Jan 24;6(1):431-40. doi: 10.1021/nn2037626. Epub 2011 Dec 6.
Plasmons in doped graphene exhibit relatively large confinement and long lifetime compared to noble-metal plasmons. Here, we study the propagation properties of plasmons guided along individual and interacting graphene nanoribbons. Besides their tunability via electrostatic gating, an additional handle to control these excitations is provided by the dielectric environment and the relative arrangement of the interacting waveguides. Plasmon interaction and hybridization in pairs of neighboring aligned ribbons are shown to be strong enough to produce dramatic modifications in the plasmon field profiles. We introduce a universal scaling law that considerably simplifies the analysis an understanding of these plasmons. Our work provides the building blocks to construct graphene plasmon circuits for future compact plasmon devices with potential application to optical signal processing, infrared sensing, and quantum information technology.
掺杂石墨烯中的等离激元与贵金属等离激元相比,表现出相对较大的限制和较长的寿命。在这里,我们研究了沿着单个和相互作用的石墨烯纳米带传播的等离激元的传播特性。除了通过静电门控进行可调谐性之外,介电环境和相互作用波导的相对布置还提供了控制这些激发的附加手段。显示出相邻对齐的 ribbons 对中的等离激元相互作用和杂化强到足以在等离激元场分布中产生显著的变化。我们引入了一个通用的标度定律,大大简化了对这些等离激元的分析和理解。我们的工作为构建未来紧凑型等离激元器件的石墨烯等离激元电路提供了构建块,这些器件具有在光学信号处理、红外传感和量子信息技术中应用的潜力。