Suppr超能文献

螺钉和宿主因素对旋入扭矩和拔出强度的影响。

Effects of screw and host factors on insertion torque and pullout strength.

机构信息

Department of Orthodontics, Orthodontic Department, St Louis University, St Louis, MO, USA.

出版信息

Angle Orthod. 2012 Jul;82(4):603-10. doi: 10.2319/070111-427.1.

Abstract

OBJECTIVE

To experimentally study the effects of altering implant length, outer diameter, cortical bone thickness, and cortical bone density on the primary stability of orthodontic miniscrew implants (MSIs).

MATERIALS AND METHODS

Maximum insertion torque (IT) and pullout strength (POS) of 216 MSIs were measured in synthetic bone with different cortical densities (0.64 g/cc or 0.55 g/cc) and cortical thicknesses (1 mm or 2 mm). Three MSIs were evaluated: 6-mm long/1.75-mm outer diameter, 3-mm long/1.75-mm outer diameter, and 3-mm long/2.0-mm outer diameter. To test POS, a vertical force was applied at the rate of 5 mm/min until failure occurred.

RESULTS

The 6-mm MSIs displayed significantly (P < .001) higher IT and POS than the 3-mm MSIs did. The 3-mm MSIs with 2.0-mm outer diameters showed significantly higher (P < .001) IT and POS than the 3-mm MSIs with 1.75-mm outer diameters. The IT and POS were significantly (P < .001) greater for the MSIs placed in thicker and denser cortical bone.

CONCLUSION

Both outer diameter and length affect the stability of MSIs. Increases in cortical bone thickness and cortical bone density increase the primary stability of the MSIs.

摘要

目的

通过实验研究改变种植体长度、外径、皮质骨厚度和皮质骨密度对正畸微种植体(MSI)初始稳定性的影响。

材料与方法

在不同皮质骨密度(0.64 g/cc 或 0.55 g/cc)和皮质骨厚度(1mm 或 2mm)的合成骨中测量了 216 个 MSI 的最大植入扭矩(IT)和拔出强度(POS)。评估了三种 MSI:长 6mm/外径 1.75mm、长 3mm/外径 1.75mm 和长 3mm/外径 2.0mm。为了测试 POS,以 5mm/min 的速率垂直施加力,直到发生故障。

结果

6mm 的 MSI 显示出明显更高的 IT 和 POS(P <.001),比 3mm 的 MSI 更高。外径为 2.0mm 的 3mm MSI 的 IT 和 POS 明显高于(P <.001)外径为 1.75mm 的 3mm MSI。在较厚和密度较高的皮质骨中,MSI 的 IT 和 POS 明显更高(P <.001)。

结论

外径和长度都影响 MSI 的稳定性。增加皮质骨厚度和皮质骨密度可提高 MSI 的初始稳定性。

相似文献

1
Effects of screw and host factors on insertion torque and pullout strength.
Angle Orthod. 2012 Jul;82(4):603-10. doi: 10.2319/070111-427.1.
2
Effects of pilot hole size and bone density on miniscrew implants' stability.
Clin Implant Dent Relat Res. 2012 Jun;14(3):454-60. doi: 10.1111/j.1708-8208.2010.00269.x. Epub 2010 Mar 12.
3
Pitch and longitudinal fluting effects on the primary stability of miniscrew implants.
Angle Orthod. 2009 Nov;79(6):1156-61. doi: 10.2319/103108-554R.1.
4
Biomechanical properties of orthodontic miniscrews. An in-vitro study.
J Orofac Orthop. 2010 Jan;71(1):53-67. doi: 10.1007/s00056-010-9933-y. Epub 2010 Feb 5.
5
Insertion Torques of Self-Drilling Mini-Implants in Simulated Mandibular Bone: Assessment of Potential for Implant Fracture.
Int J Oral Maxillofac Implants. 2016 May-Jun;31(3):e57-64. doi: 10.11607/jomi.4427.
6
Mechanical stability and clinical applicability assessment of novel orthodontic mini-implant design.
Angle Orthod. 2013 Sep;83(5):832-41. doi: 10.2319/111412-876.1. Epub 2013 Apr 29.
7
Effects of pilot holes on longitudinal miniscrew stability and bony adaptation.
Am J Orthod Dentofacial Orthop. 2014 Nov;146(5):554-64. doi: 10.1016/j.ajodo.2014.07.017. Epub 2014 Oct 28.
9
Three-dimensional analysis of peri-bone-implant contact of rough-surface miniscrew implants.
Am J Orthod Dentofacial Orthop. 2011 Feb;139(2):e153-63. doi: 10.1016/j.ajodo.2010.09.022.
10
Stability of immediately loaded 3 mm long miniscrew implants: a feasibility study.
Dental Press J Orthod. 2021 Mar 22;26(1):e2119155. doi: 10.1590/2177-6709.26.1.e2119155.oar. eCollection 2021.

引用本文的文献

1
Study on the Reasonability of Single-Objective Optimization in Miniscrew Design.
Materials (Basel). 2025 Feb 21;18(5):973. doi: 10.3390/ma18050973.
2
Characterizing orthodontic mini-screws in the hard palate of pigs: An experimental and finite-element study.
Heliyon. 2024 Jan 22;10(3):e24952. doi: 10.1016/j.heliyon.2024.e24952. eCollection 2024 Feb 15.
3
Development and in vitro testing of an orthodontic miniscrew for use in the mandible.
J Orofac Orthop. 2025 Aug;86(Suppl 1):100-110. doi: 10.1007/s00056-024-00560-z. Epub 2024 Nov 26.
5
Mechanical stability of orthodontic miniscrew depends on a thread shape.
J Dent Sci. 2022 Jul;17(3):1244-1252. doi: 10.1016/j.jds.2021.11.010. Epub 2021 Dec 11.
6
Primary Stability of Dental Implants in Low-Density (10 and 20 pcf) Polyurethane Foam Blocks: Conical vs Cylindrical Implants.
Int J Environ Res Public Health. 2020 Apr 11;17(8):2617. doi: 10.3390/ijerph17082617.
7
Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants.
Materials (Basel). 2015 Sep 23;8(9):6558-6569. doi: 10.3390/ma8095322.
9
Screw-type device diameter and orthodontic loading influence adjacent bone remodeling.
Angle Orthod. 2017 May;87(3):466-472. doi: 10.2319/041316-302.1. Epub 2016 Dec 8.
10
Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial.
Open Dent J. 2016 May 31;10:251-60. doi: 10.2174/1874210601610010251. eCollection 2016.

本文引用的文献

1
Cortical bone thickness at common miniscrew implant placement sites.
Am J Orthod Dentofacial Orthop. 2011 Apr;139(4):495-503. doi: 10.1016/j.ajodo.2009.03.057.
2
Is there an optimal force level for sutural expansion?
Am J Orthod Dentofacial Orthop. 2011 Apr;139(4):446-55. doi: 10.1016/j.ajodo.2009.03.056.
3
Factors affecting the long-term stability of orthodontic mini-implants.
Am J Orthod Dentofacial Orthop. 2010 May;137(5):588.e1-5; discussion 588-9. doi: 10.1016/j.ajodo.2009.05.019.
4
Effects of pilot hole size and bone density on miniscrew implants' stability.
Clin Implant Dent Relat Res. 2012 Jun;14(3):454-60. doi: 10.1111/j.1708-8208.2010.00269.x. Epub 2010 Mar 12.
5
Pullout strength of miniscrews placed in anterior mandibles of adult and adolescent dogs: a microcomputed tomographic analysis.
Am J Orthod Dentofacial Orthop. 2010 Jan;137(1):100-7. doi: 10.1016/j.ajodo.2008.01.025.
6
Miniscrew stability evaluated with computerized tomography scanning.
Am J Orthod Dentofacial Orthop. 2010 Jan;137(1):73-9. doi: 10.1016/j.ajodo.2008.03.024.
7
Continuous forces are more effective than intermittent forces in expanding sutures.
Eur J Orthod. 2010 Aug;32(4):371-80. doi: 10.1093/ejo/cjp103. Epub 2010 Jan 6.
8
Effects of recombinant human bone morphogenetic protein-2 on midsagittal sutural bone formation during expansion.
Am J Orthod Dentofacial Orthop. 2009 Dec;136(6):768.e1-8; discussion 768-9. doi: 10.1016/j.ajodo.2009.03.035.
9
Three-dimensional evaluation of interradicular spaces and cortical bone thickness for the placement and initial stability of microimplants in adults.
Am J Orthod Dentofacial Orthop. 2009 Sep;136(3):314.e1-12; discussion 314-5. doi: 10.1016/j.ajodo.2009.01.023.
10
Stability of immediately loaded 3- and 6-mm miniscrew implants in beagle dogs--a pilot study.
Am J Orthod Dentofacial Orthop. 2009 Aug;136(2):251-9. doi: 10.1016/j.ajodo.2008.03.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验