Suppr超能文献

群体遗传数据模拟概述。

An overview of population genetic data simulation.

作者信息

Yuan Xiguo, Miller David J, Zhang Junying, Herrington David, Wang Yue

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, P.R. China.

出版信息

J Comput Biol. 2012 Jan;19(1):42-54. doi: 10.1089/cmb.2010.0188. Epub 2011 Dec 9.

Abstract

Simulation studies in population genetics play an important role in helping to better understand the impact of various evolutionary and demographic scenarios on sequence variation and sequence patterns, and they also permit investigators to better assess and design analytical methods in the study of disease-associated genetic factors. To facilitate these studies, it is imperative to develop simulators with the capability to accurately generate complex genomic data under various genetic models. Currently, a number of efficient simulation software packages for large-scale genomic data are available, and new simulation programs with more sophisticated capabilities and features continue to emerge. In this article, we review the three basic simulation frameworks--coalescent, forward, and resampling--and some of the existing simulators that fall under these frameworks, comparing them with respect to their evolutionary and demographic scenarios, their computational complexity, and their specific applications. Additionally, we address some limitations in current simulation algorithms and discuss future challenges in the development of more powerful simulation tools.

摘要

群体遗传学中的模拟研究在帮助更好地理解各种进化和人口统计学情景对序列变异和序列模式的影响方面发挥着重要作用,并且它们还使研究人员能够在疾病相关遗传因素的研究中更好地评估和设计分析方法。为了促进这些研究,开发能够在各种遗传模型下准确生成复杂基因组数据的模拟器势在必行。目前,有许多用于大规模基因组数据的高效模拟软件包,并且具有更复杂功能和特性的新模拟程序不断涌现。在本文中,我们回顾了三种基本的模拟框架——溯祖、正向和重采样——以及属于这些框架的一些现有模拟器,并在进化和人口统计学情景、计算复杂性以及特定应用方面对它们进行比较。此外,我们指出了当前模拟算法中的一些局限性,并讨论了开发更强大模拟工具未来面临的挑战。

相似文献

1
An overview of population genetic data simulation.群体遗传数据模拟概述。
J Comput Biol. 2012 Jan;19(1):42-54. doi: 10.1089/cmb.2010.0188. Epub 2011 Dec 9.
4
SLiM 2: Flexible, Interactive Forward Genetic Simulations.SLiM 2:灵活、交互式正向遗传模拟。
Mol Biol Evol. 2017 Jan;34(1):230-240. doi: 10.1093/molbev/msw211. Epub 2016 Oct 3.
6
Sequence-level population simulations over large genomic regions.大型基因组区域的序列水平群体模拟。
Genetics. 2007 Nov;177(3):1725-31. doi: 10.1534/genetics.106.069088. Epub 2007 Oct 18.
7
TreesimJ: a flexible, forward time population genetic simulator.TreesimJ:一款灵活的、正向时间的群体遗传模拟器。
Bioinformatics. 2010 Sep 1;26(17):2200-1. doi: 10.1093/bioinformatics/btq355. Epub 2010 Jul 29.

引用本文的文献

2
Fast simulation of identity-by-descent segments.同源片段的快速模拟。
Bull Math Biol. 2025 May 23;87(7):84. doi: 10.1007/s11538-025-01464-8.
4
Fast simulation of identity-by-descent segments.同源片段的快速模拟。
bioRxiv. 2025 Jan 7:2024.12.13.628449. doi: 10.1101/2024.12.13.628449.
7
Learning the kernel for rare variant genetic association test.学习罕见变异基因关联测试的核心方法。
Front Genet. 2023 Oct 9;14:1245238. doi: 10.3389/fgene.2023.1245238. eCollection 2023.
10
Demes: a standard format for demographic models.人群:人口模型的标准格式。
Genetics. 2022 Nov 1;222(3). doi: 10.1093/genetics/iyac131.

本文引用的文献

1
A Ground Truth Based Comparative Study on Detecting Epistatic SNPs.一项基于真实情况的检测上位性单核苷酸多态性的比较研究。
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2009 Nov 1;1-4(Nov 2009):26-31. doi: 10.1109/BIBMW.2009.5332132.
3
Simulation of genomes: a review.基因组模拟:综述。
Curr Genomics. 2008 May;9(3):155-9. doi: 10.2174/138920208784340759.
5
Fast and flexible simulation of DNA sequence data.DNA序列数据的快速灵活模拟。
Genome Res. 2009 Jan;19(1):136-42. doi: 10.1101/gr.083634.108. Epub 2008 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验