Suppr超能文献

分子对接结果作为描述符预测人血清白蛋白结合亲和力。

Results of molecular docking as descriptors to predict human serum albumin binding affinity.

机构信息

State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, PR China.

出版信息

J Mol Graph Model. 2012 Mar;33:35-43. doi: 10.1016/j.jmgm.2011.11.003. Epub 2011 Nov 23.

Abstract

Pharmacokinetic properties of a compound are important in drug discovery and development. These properties are most often estimated from the structural properties of a compound with a structural-activity relationship (QSAR) approach. Rapid advances in molecular pharmacology have characterized a number of important proteins that shape the pharmacokinetic profile of a compound. Previous studies have shown that molecular docking, which is capable of analyzing compound-protein interactions, could be applied to make a categorical estimation of a pharmacokinetic property. The present study focused on the binding affinity of human serum albumin (HSA) as an example to show that docking descriptors might also be useful to estimate the exact value of a pharmacokinetic property. A previously reported dataset containing 94 compounds with logK(HSA) values was analyzed. A support vector regression model based on the docking descriptors was able to approximate the observed logK(HSA) in the training and validation dataset with an R(2)=0.79. This accuracy was comparable to known QSAR models based on compound descriptors. In this case study, it was shown that an account of protein flexibility is essential to calculate informative docking descriptors for use in the quantitative estimation of logK(HSA).

摘要

化合物的药代动力学性质在药物发现和开发中很重要。这些性质通常是通过结构-活性关系(QSAR)方法从化合物的结构性质来估计的。分子药理学的快速发展已经确定了许多重要的蛋白质,这些蛋白质塑造了化合物的药代动力学特征。先前的研究表明,分子对接能够分析化合物-蛋白质相互作用,可用于对药代动力学性质进行分类估计。本研究以人血清白蛋白(HSA)的结合亲和力为例,表明对接描述符也可用于估计药代动力学性质的确切值。分析了一个包含 94 种具有 logK(HSA)值的化合物的已报道数据集。基于对接描述符的支持向量回归模型能够在训练和验证数据集上近似观察到的 logK(HSA),R(2)=0.79。这种准确性与基于化合物描述符的已知 QSAR 模型相当。在这个案例研究中,表明计算信息丰富的对接描述符以用于定量估计 logK(HSA)时,考虑蛋白质的灵活性至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验