Suppr超能文献

自然语言处理与动态分类提高 P300 拼写器的准确率和比特率。

Natural language processing with dynamic classification improves P300 speller accuracy and bit rate.

机构信息

Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA, USA.

出版信息

J Neural Eng. 2012 Feb;9(1):016004. doi: 10.1088/1741-2560/9/1/016004. Epub 2011 Dec 12.

Abstract

The P300 speller is an example of a brain-computer interface that can restore functionality to victims of neuromuscular disorders. Although the most common application of this system has been communicating language, the properties and constraints of the linguistic domain have not to date been exploited when decoding brain signals that pertain to language. We hypothesized that combining the standard stepwise linear discriminant analysis with a Naive Bayes classifier and a trigram language model would increase the speed and accuracy of typing with the P300 speller. With integration of natural language processing, we observed significant improvements in accuracy and 40-60% increases in bit rate for all six subjects in a pilot study. This study suggests that integrating information about the linguistic domain can significantly improve signal classification.

摘要

P300 拼写器是一种脑机接口,可以为神经肌肉疾病患者恢复功能。尽管该系统最常见的应用是语言交流,但迄今为止,在解码与语言相关的脑信号时,尚未利用语言领域的特性和约束条件。我们假设,将标准逐步线性判别分析与朴素贝叶斯分类器和三进制语言模型相结合,可以提高 P300 拼写器的打字速度和准确率。通过自然语言处理的集成,我们在一项试点研究中观察到,所有 6 名受试者的准确率都有显著提高,比特率提高了 40%到 60%。这项研究表明,整合语言领域的信息可以显著改善信号分类。

相似文献

3
A dictionary-driven P300 speller with a modified interface.基于字典驱动的 P300 拼写器,带有改进的界面。
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):6-14. doi: 10.1109/TNSRE.2010.2049373. Epub 2010 May 6.
8
A POMDP approach to optimizing P300 speller BCI paradigm.一种用于优化 P300 拼写器脑机接口范式的 POMDP 方法。
IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):584-94. doi: 10.1109/TNSRE.2012.2191979. Epub 2012 Apr 9.
9

引用本文的文献

6
Improving P300 Spelling Rate using Language Models and Predictive Spelling.使用语言模型和预测性拼写提高P300拼写率
Brain Comput Interfaces (Abingdon). 2018;5(1):13-22. doi: 10.1080/2326263X.2017.1410418. Epub 2017 Dec 26.

本文引用的文献

2
The P300-based brain-computer interface (BCI): effects of stimulus rate.基于 P300 的脑-机接口(BCI):刺激率的影响。
Clin Neurophysiol. 2011 Apr;122(4):731-7. doi: 10.1016/j.clinph.2010.10.029. Epub 2010 Nov 9.
6
A comparison of classification techniques for the P300 Speller.P300 拼写器分类技术的比较
J Neural Eng. 2006 Dec;3(4):299-305. doi: 10.1088/1741-2560/3/4/007. Epub 2006 Oct 26.
8
An improved P300-based brain-computer interface.一种改进的基于P300的脑机接口。
IEEE Trans Neural Syst Rehabil Eng. 2005 Mar;13(1):89-98. doi: 10.1109/TNSRE.2004.841878.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验