Suppr超能文献

活性半胱氨酸残基分析与功能预测。

Analysis and functional prediction of reactive cysteine residues.

机构信息

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Biol Chem. 2012 Feb 10;287(7):4419-25. doi: 10.1074/jbc.R111.275578. Epub 2011 Dec 6.

Abstract

Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pK(a), to algorithms for functional prediction of different types of Cys in proteins.

摘要

半胱氨酸在蛋白质中与其他常见氨基酸有很大的不同。作为最不丰富的残基之一,半胱氨酸经常出现在蛋白质的功能位点中。这种残基具有反应性、极化性和氧化还原活性;对金属具有高亲和力;并且对局部环境特别敏感。对半胱氨酸基本性质的更好理解对于解释高通量数据集以及预测和分类蛋白质中的功能半胱氨酸残基是必要的。我们提供了一种研究半胱氨酸残基的方法概述,从研究其基本性质(如暴露度和 pK(a))的方法到用于预测蛋白质中不同类型半胱氨酸功能的算法。

相似文献

1
Analysis and functional prediction of reactive cysteine residues.
J Biol Chem. 2012 Feb 10;287(7):4419-25. doi: 10.1074/jbc.R111.275578. Epub 2011 Dec 6.
2
Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces.
J Mol Biol. 2010 Dec 17;404(5):902-16. doi: 10.1016/j.jmb.2010.09.027. Epub 2010 Oct 13.
3
Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
BMC Bioinformatics. 2016 Aug 24;17(1):316. doi: 10.1186/s12859-016-1185-4.
4
Redox biology: computational approaches to the investigation of functional cysteine residues.
Antioxid Redox Signal. 2011 Jul 1;15(1):135-46. doi: 10.1089/ars.2010.3561. Epub 2011 Apr 14.
5
Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.
Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.
6
Servers for sequence-structure relationship analysis and prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3359-63. doi: 10.1093/nar/gkg589.
7
A computational analysis of S-(2-succino)cysteine sites in proteins.
Biochim Biophys Acta. 2016 Feb;1864(2):211-8. doi: 10.1016/j.bbapap.2015.11.003. Epub 2015 Nov 14.
8
High-throughput identification of catalytic redox-active cysteine residues.
Science. 2007 Jan 19;315(5810):387-9. doi: 10.1126/science.1133114.

引用本文的文献

1
Synergistic action between peptide-neomycin conjugates and polymyxin B against multidrug-resistant gram-negative pathogens.
Front Microbiol. 2025 Aug 7;16:1605813. doi: 10.3389/fmicb.2025.1605813. eCollection 2025.
3
4
KaMLs for Predicting Protein p Values and Ionization States: Are Trees All You Need?
J Chem Theory Comput. 2025 Feb 11;21(3):1446-1458. doi: 10.1021/acs.jctc.4c01602. Epub 2025 Jan 30.
5
KaMLs for Predicting Protein p Values and Ionization States: Are Trees All You Need?
bioRxiv. 2025 Jan 30:2024.11.09.622800. doi: 10.1101/2024.11.09.622800.
6
A roadmap to cysteine specific labeling of membrane proteins for single-molecule photobleaching studies.
Methods. 2025 Feb;234:21-35. doi: 10.1016/j.ymeth.2024.10.013. Epub 2024 Nov 23.
7
Identification of Pathogenic Missense Mutations of NF1 Using Computational Approaches.
J Mol Neurosci. 2024 Oct 7;74(4):94. doi: 10.1007/s12031-024-02271-x.
9
Navigating the redox landscape: reactive oxygen species in regulation of cell cycle.
Redox Rep. 2024 Dec;29(1):2371173. doi: 10.1080/13510002.2024.2371173. Epub 2024 Jul 7.

本文引用的文献

1
Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes.
Antioxid Redox Signal. 2012 Feb 1;16(3):193-201. doi: 10.1089/ars.2011.3980. Epub 2011 Nov 23.
2
Protein sulfenic acid formation: from cellular damage to redox regulation.
Free Radic Biol Med. 2011 Jul 15;51(2):314-26. doi: 10.1016/j.freeradbiomed.2011.04.031. Epub 2011 Apr 23.
3
Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity.
Mech Ageing Dev. 2011 Apr;132(4):171-9. doi: 10.1016/j.mad.2011.03.002. Epub 2011 Mar 29.
6
Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery.
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21430-4. doi: 10.1073/pnas.1009947107. Epub 2010 Nov 29.
7
Quantitative reactivity profiling predicts functional cysteines in proteomes.
Nature. 2010 Dec 9;468(7325):790-5. doi: 10.1038/nature09472. Epub 2010 Nov 17.
8
PREX: PeroxiRedoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family.
Nucleic Acids Res. 2011 Jan;39(Database issue):D332-7. doi: 10.1093/nar/gkq1060. Epub 2010 Oct 29.
9
Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces.
J Mol Biol. 2010 Dec 17;404(5):902-16. doi: 10.1016/j.jmb.2010.09.027. Epub 2010 Oct 13.
10
Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging.
Exp Gerontol. 2011 Feb-Mar;46(2-3):164-9. doi: 10.1016/j.exger.2010.08.034. Epub 2010 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验