Suppr超能文献

氧化还原生物学:研究功能半胱氨酸残基的计算方法。

Redox biology: computational approaches to the investigation of functional cysteine residues.

机构信息

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Antioxid Redox Signal. 2011 Jul 1;15(1):135-46. doi: 10.1089/ars.2010.3561. Epub 2011 Apr 14.

Abstract

Cysteine (Cys) residues serve many functions, such as catalysis, stabilization of protein structure through disulfides, metal binding, and regulation of protein function. Cys residues are also subject to numerous post-translational modifications. In recent years, various computational tools aiming at classifying and predicting different functional categories of Cys have been developed, particularly for structural and catalytic Cys. On the other hand, given complexity of the subject, bioinformatics approaches have been less successful for the investigation of regulatory Cys sites. In this review, we introduce different functional categories of Cys residues. For each category, an overview of state-of-the-art bioinformatics methods and tools is provided, along with examples of successful applications and potential limitations associated with each approach. Finally, we discuss Cys-based redox switches, which modify the view of distinct functional categories of Cys in proteins.

摘要

半胱氨酸(Cys)残基具有多种功能,如催化、通过二硫键稳定蛋白质结构、金属结合和调节蛋白质功能。Cys 残基还受到许多翻译后修饰的影响。近年来,已经开发了各种旨在对不同功能类别 Cys 进行分类和预测的计算工具,特别是针对结构和催化 Cys。另一方面,由于该主题的复杂性,生物信息学方法在研究调节 Cys 位点方面的效果较差。在这篇综述中,我们介绍了 Cys 残基的不同功能类别。对于每种类别,我们提供了最新的生物信息学方法和工具的概述,以及每种方法的成功应用和潜在局限性的示例。最后,我们讨论了基于 Cys 的氧化还原开关,它改变了蛋白质中不同功能类别 Cys 的观点。

相似文献

1
Redox biology: computational approaches to the investigation of functional cysteine residues.
Antioxid Redox Signal. 2011 Jul 1;15(1):135-46. doi: 10.1089/ars.2010.3561. Epub 2011 Apr 14.
3
ROSics: chemistry and proteomics of cysteine modifications in redox biology.
Mass Spectrom Rev. 2015 Mar-Apr;34(2):184-208. doi: 10.1002/mas.21430. Epub 2014 Jun 10.
4
Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.
Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.
5
Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
Methods Mol Biol. 2017;1558:191-212. doi: 10.1007/978-1-4939-6783-4_9.
8
A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues.
PLoS Comput Biol. 2009 May;5(5):e1000383. doi: 10.1371/journal.pcbi.1000383. Epub 2009 May 8.
10
iSulf-Cys: Prediction of S-sulfenylation Sites in Proteins with Physicochemical Properties of Amino Acids.
PLoS One. 2016 Apr 22;11(4):e0154237. doi: 10.1371/journal.pone.0154237. eCollection 2016.

引用本文的文献

4
Molecular determinants of acrylamide neurotoxicity through covalent docking.
Front Pharmacol. 2023 Mar 2;14:1125871. doi: 10.3389/fphar.2023.1125871. eCollection 2023.
5
Targeting of the intracellular redox balance by metal complexes towards anticancer therapy.
Front Chem. 2022 Aug 11;10:967337. doi: 10.3389/fchem.2022.967337. eCollection 2022.
6
Homocysteinylation and Sulfhydration in Diseases.
Curr Neuropharmacol. 2022 Aug 3;20(9):1726-1735. doi: 10.2174/1570159X20666211223125448.
9
pCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework.
Front Cell Dev Biol. 2021 Feb 23;9:617366. doi: 10.3389/fcell.2021.617366. eCollection 2021.
10
Non-redox cycling mechanisms of oxidative stress induced by PM metals.
Free Radic Biol Med. 2020 May 1;151:26-37. doi: 10.1016/j.freeradbiomed.2019.12.027. Epub 2019 Dec 23.

本文引用的文献

1
Chemical 'omics' approaches for understanding protein cysteine oxidation in biology.
Curr Opin Chem Biol. 2011 Feb;15(1):88-102. doi: 10.1016/j.cbpa.2010.11.012. Epub 2010 Dec 3.
2
Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces.
J Mol Biol. 2010 Dec 17;404(5):902-16. doi: 10.1016/j.jmb.2010.09.027. Epub 2010 Oct 13.
3
Effects of oxidative stress on behavior, physiology, and the redox thiol proteome of Caenorhabditis elegans.
Antioxid Redox Signal. 2011 Mar 15;14(6):1023-37. doi: 10.1089/ars.2010.3203. Epub 2010 Oct 28.
4
DBCP: a web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W503-7. doi: 10.1093/nar/gkq514. Epub 2010 Jun 8.
5
Intermolecular disulfide bond to modulate protein function as a redox-sensing switch.
Amino Acids. 2011 Jun;41(1):59-72. doi: 10.1007/s00726-010-0508-4. Epub 2010 Feb 24.
6
dbTEU: a protein database of trace element utilization.
Bioinformatics. 2010 Mar 1;26(5):700-2. doi: 10.1093/bioinformatics/btp705. Epub 2010 Jan 6.
7
Orchestrating redox signaling networks through regulatory cysteine switches.
ACS Chem Biol. 2010 Jan 15;5(1):47-62. doi: 10.1021/cb900258z.
8
The redox switch: dynamic regulation of protein function by cysteine modifications.
Physiol Plant. 2010 Apr;138(4):360-71. doi: 10.1111/j.1399-3054.2009.01307.x. Epub 2009 Oct 15.
9
Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation.
J Mol Biol. 2010 Jan 29;395(4):844-59. doi: 10.1016/j.jmb.2009.10.042. Epub 2009 Oct 23.
10
Molecular mechanism for H(2)S-induced activation of K(ATP) channels.
Antioxid Redox Signal. 2010 May 15;12(10):1167-78. doi: 10.1089/ars.2009.2894.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验