Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):20988-91. doi: 10.1073/pnas.1114660108. Epub 2011 Dec 12.
Although a number of solar biohydrogen systems employing photosystem I (PSI) have been developed, few attain the electron transfer throughput of oxygenic photosynthesis. We have optimized a biological/organic nanoconstruct that directly tethers F(B), the terminal [4Fe-4S] cluster of PSI from Synechococcus sp. PCC 7002, to the distal [4Fe-4S] cluster of the [FeFe]-hydrogenase (H(2)ase) from Clostridium acetobutylicum. On illumination, the PSI-[FeFe]-H(2)ase nanoconstruct evolves H(2) at a rate of 2,200 ± 460 μmol mg chlorophyll(-1) h(-1), which is equivalent to 105 ± 22 e(-)PSI(-1) s(-1). Cyanobacteria evolve O(2) at a rate of approximately 400 μmol mg chlorophyll(-1) h(-1), which is equivalent to 47 e(-)PSI(-1) s(-1), given a PSI to photosystem II ratio of 1.8. The greater than twofold electron throughput by this hybrid biological/organic nanoconstruct over in vivo oxygenic photosynthesis validates the concept of tethering proteins through their redox cofactors to overcome diffusion-based rate limitations on electron transfer.
虽然已经开发了许多采用光合系统 I (PSI) 的太阳能生物制氢系统,但很少能达到产氧光合作用的电子传递通量。我们已经优化了一种生物/有机纳米结构,该结构可将 PSI 来自 Synechococcus sp. PCC 7002 的 F(B),即末端 [4Fe-4S] 簇,直接连接到来自 Clostridium acetobutylicum 的 [FeFe]-氢化酶 (H(2)ase) 的远端 [4Fe-4S] 簇。在光照下,PSI-[FeFe]-H(2)ase 纳米结构以 2,200 ± 460 μmol mg 叶绿素(-1) h(-1)的速率产生 H(2),相当于 105 ± 22 e(-)PSI(-1) s(-1)。鉴于 PSI 到光系统 II 的比例为 1.8,蓝藻以约 400 μmol mg 叶绿素(-1) h(-1)的速率产生 O(2),相当于 47 e(-)PSI(-1) s(-1)。这种混合生物/有机纳米结构的电子传递通量是体内产氧光合作用的两倍多,验证了通过其氧化还原辅因子将蛋白质连接起来以克服电子传递基于扩散的速率限制的概念。