The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21241-6. doi: 10.1073/pnas.1108261109. Epub 2011 Dec 12.
Unbalanced visual input during development induces persistent alterations in the function and structure of visual cortical neurons. The molecular mechanisms that drive activity-dependent changes await direct visualization of underlying signals at individual synapses in vivo. By using a genetically engineered Förster resonance energy transfer (FRET) probe for the detection of CaMKII activity, and two-photon imaging of single synapses within identified functional domains, we have revealed unexpected and differential mechanisms in specific subsets of synapses in vivo. Brief monocular deprivation leads to activation of CaMKII in most synapses of layer 2/3 pyramidal cells within deprived eye domains, despite reduced visual drive, but not in nondeprived eye domains. Synapses that are eliminated in deprived eye domains have low basal CaMKII activity, implying a protective role for activated CaMKII against synapse elimination.
在发育过程中,不平衡的视觉输入会导致视觉皮层神经元的功能和结构持续改变。驱动活性依赖性变化的分子机制有待于在体内直接观察单个突触下的潜在信号。通过使用基因工程的Förster 共振能量转移(FRET)探针来检测 CaMKII 活性,以及在已识别的功能域内对单个突触进行双光子成像,我们揭示了体内特定突触亚群中出乎意料的和不同的机制。短暂的单眼剥夺导致在剥夺眼域内的大多数 2/3 层锥体神经元的突触中 CaMKII 的激活,尽管视觉驱动减少,但在未剥夺眼域内没有激活。在剥夺眼域中被消除的突触具有低基础 CaMKII 活性,这表明激活的 CaMKII 对突触消除具有保护作用。