Suppr超能文献

过压层离析法从柿树根中分离到的抗真菌代谢产物。

Antifungal metabolites from the roots of Diospyros virginiana by overpressure layer chromatography.

机构信息

Department of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.

出版信息

Chem Biodivers. 2011 Dec;8(12):2331-40. doi: 10.1002/cbdv.201000310.

Abstract

A preparative overpressure layer chromatography (OPLC) method was successfully used for the separation of two new natural compounds, 4-hydroxy-5,6-dimethoxynaphthalene-2-carbaldehyde (1) and 12,13-didehydro-20,29-dihydrobetulin (2) together with nine known compounds, including 7-methyljuglone (3), diospyrin (4), isodiospyrin (5), shinanolone (6), lupeol (7), betulin (8), betulinic acid (9), betulinaldehyde (10), and ursolic acid (11) from the acetone extract of the roots of Diospyros virginiana. Their identification was accomplished by 1D- and 2D-NMR spectroscopy and HR-ESI-MS methods. All the isolated compounds were evaluated for their antifungal activities against Colletotrichum fragariae, C. gloeosporioides, C. acutatum, Botrytis cinerea, Fusarium oxysporum, Phomopsis obscurans, and P. viticola using in vitro micro-dilution broth assay. The results indicated that compounds 3 and 5 showed high antifungal activity against P. obscurans at 30 μM with 97.0 and 81.4% growth inhibition, and moderate activity against P. viticola (54.3 and 36.6%). It appears that an optimized OPLC system offers a rapid and efficient method of exploiting bioactive natural products.

摘要

一种制备性超压层色谱(OPLC)方法成功地用于分离两种新的天然化合物,4-羟基-5,6-二甲氧基萘-2-甲醛(1)和 12,13-二脱氢-20,29-二氢白桦脂醇(2),以及九种已知化合物,包括 7-甲基胡桃醌(3)、地奥司平(4)、异地奥司平(5)、山萘酮(6)、羽扇豆醇(7)、白桦脂醇(8)、白桦脂酸(9)、桦木醛(10)和熊果酸(11),它们均从桃叶卫矛根的丙酮提取物中分离得到。通过 1D 和 2D-NMR 光谱和 HR-ESI-MS 方法鉴定了它们的结构。所有分离得到的化合物都通过体外微量稀释肉汤测定法评估了它们对草莓炭疽菌、胶孢炭疽菌、尖孢镰刀菌、灰葡萄孢、尖孢镰刀菌、拟茎点霉和葡萄座腔菌的抗真菌活性。结果表明,化合物 3 和 5 对拟茎点霉表现出高抗真菌活性,在 30 μM 时抑制率分别为 97.0%和 81.4%,对葡萄座腔菌表现出中度活性(54.3%和 36.6%)。似乎优化的 OPLC 系统提供了一种快速高效的方法来开发生物活性天然产物。

相似文献

1
Antifungal metabolites from the roots of Diospyros virginiana by overpressure layer chromatography.
Chem Biodivers. 2011 Dec;8(12):2331-40. doi: 10.1002/cbdv.201000310.
2
Antifungal activity of thiophenes from Echinops ritro.
J Agric Food Chem. 2006 Mar 8;54(5):1651-5. doi: 10.1021/jf052702j.
3
pH modulation of zopfiellin antifungal activity to Colletotrichum and Botrytis.
J Agric Food Chem. 2002 Nov 20;50(24):7007-12. doi: 10.1021/jf025720z.
4
Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.
Fitoterapia. 2014 Dec;99:341-6. doi: 10.1016/j.fitote.2014.08.021. Epub 2014 Aug 27.
5
Antifungal clerodane diterpenes from Macaranga monandra (L) Muell. et Arg. (Euphorbiaceae).
J Agric Food Chem. 2003 Dec 17;51(26):7607-10. doi: 10.1021/jf034682w.
6
Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides.
J Agric Food Chem. 2013 May 15;61(19):4551-5. doi: 10.1021/jf400212y. Epub 2013 May 7.
8
Bioassay-guided isolation of antibacterial constituents from Diospyros lotus roots.
Nat Prod Res. 2016;30(4):426-8. doi: 10.1080/14786419.2015.1013957. Epub 2015 Feb 23.
9
Natural fungicides from Ruta graveolens L. leaves, including a new quinolone alkaloid.
J Agric Food Chem. 2003 Feb 12;51(4):890-6. doi: 10.1021/jf0259361.
10
Fungicidal Properties of Some Novel Trifluoromethylphenyl Amides.
Chem Biodivers. 2019 May;16(5):e1800618. doi: 10.1002/cbdv.201800618. Epub 2019 Apr 25.

引用本文的文献

1
The Genus : A Review of Novel Insights into the Biological Activity and Species of Mozambican Flora.
Plants (Basel). 2023 Jul 31;12(15):2833. doi: 10.3390/plants12152833.
2
HPTLC Analysis and Chemical Composition of Selected Essential Oils.
Molecules. 2023 May 6;28(9):3925. doi: 10.3390/molecules28093925.
3
Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update.
Int J Mol Sci. 2020 Aug 18;21(16):5920. doi: 10.3390/ijms21165920.
4
The Phytochemistry of Cherokee Aromatic Medicinal Plants.
Medicines (Basel). 2018 Nov 12;5(4):121. doi: 10.3390/medicines5040121.
5
Review of the chemistry and pharmacology of 7-Methyljugulone.
Afr Health Sci. 2014 Mar;14(1):201-5. doi: 10.4314/ahs.v14i1.31.
6
Flavanones from .
Phytochem Lett. 2014 Feb;7:130-132. doi: 10.1016/j.phytol.2013.11.001.

本文引用的文献

1
New cytotoxic lupane triterpenes from Perrottetia arisanensis.
Planta Med. 2009 Jun;75(8):848-55. doi: 10.1055/s-0029-1185438. Epub 2009 Mar 18.
2
Bioactive constituents from Turkish Pimpinella species.
Chem Biodivers. 2005 Feb;2(2):221-32. doi: 10.1002/cbdv.200590005.
3
A multidimensional overpressured layer chromatographic method for the characterization of tetrazine libraries.
J Biochem Biophys Methods. 2007 Jan 10;69(3):239-49. doi: 10.1016/j.jbbm.2005.12.005. Epub 2006 Jan 24.
4
New cytotoxic naphthopyrane derivatives from Adenaria floribunda.
J Nat Prod. 2004 Mar;67(3):451-3. doi: 10.1021/np030223d.
6
Activity of quinones on colletotrichum species.
J Agric Food Chem. 2003 Jun 18;51(13):3824-8. doi: 10.1021/jf0343229.
7
Biological activity of persimmon (Diospyros kaki) peel extracts.
Phytother Res. 2003 May;17(5):495-500. doi: 10.1002/ptr.1183.
8
Pharmacology and chemotaxonomy of Diospyros.
Phytochemistry. 1998 Oct;49(4):901-51. doi: 10.1016/s0031-9422(97)01020-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验