State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Sensors (Basel). 2011;11(7):6856-67. doi: 10.3390/s110706856. Epub 2011 Jul 1.
We propose a compact 1-μm-radius microring resonator sensor based on a hybrid plasmonic waveguide on a silicon-on-insulator substrate. The hybrid waveguide is composed of a metal-gap-silicon structure, where the optical energy is greatly enhanced in the narrow gap. We use the finite element method to numerically analyze the device optical characteristics as a biochemical sensor. As the optical field in the hybrid micoring resonator has a large overlap with the upper-cladding sensing medium, the sensitivity is very high compared to other dielectric microring resonator sensors. The compactness of the hybrid microring resonator is resulted from the balance between bending radiation loss and metal absorption loss. The proposed hybrid microring resonator sensors have the main advantages of small footprint and high sensitivity and can be potentially integrated in an array form on a chip for highly-efficient lab-on-chip biochemical sensing applications.
我们提出了一种基于绝缘体上硅的混合等离子体波导的紧凑的 1μm 半径微环谐振器传感器。混合波导由金属-间隙-硅结构组成,其中光学能量在窄间隙中得到极大增强。我们使用有限元方法对器件的光学特性进行数值分析,将其作为生化传感器。由于混合微环谐振器中的光场与上包层传感介质有很大的重叠,因此与其他介质微环谐振器传感器相比,灵敏度非常高。混合微环谐振器的紧凑性是由弯曲辐射损耗和金属吸收损耗之间的平衡产生的。所提出的混合微环谐振器传感器具有占地面积小、灵敏度高的主要优点,可以在芯片上以阵列形式集成,用于高效的片上生化传感应用。