Suppr超能文献

13 号染色体上与次最大运动能力训练反应相关的 QTL 精细定位:HERITAGE 家族研究。

Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.

机构信息

Division of Biostatistics, Washington University, St. Louis, MO 63110, USA.

出版信息

Eur J Appl Physiol. 2012 Aug;112(8):2969-78. doi: 10.1007/s00421-011-2274-8. Epub 2011 Dec 15.

Abstract

Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.

摘要

虽然有规律的运动可以提高次最大有氧能力,但运动训练对其的反应存在很大的可变性。虽然这种变化部分归因于遗传差异,但对于因果基因知之甚少。本报告中的次最大有氧能力特征包括在最大摄氧量的 60%时,耗氧量(ΔVO(2)60)、功率输出(ΔWORK60)和心输出量(ΔQ60)对标准化 20 周耐力运动训练计划的反应。在 475 名 HERITAGE 家族研究的白种人中进行全基因组连锁分析,确定了染色体 13q 上与 ΔVO(2)60 相关的一个基因座(LOD = 3.11)。后续的精细作图涉及到一个超过 1800 个单核苷酸多态性(SNP)的高密度标记面板,该面板位于 7.9Mb 的区域内(从 p 端起的 21.1-29.1Mb)。单 SNP 分析发现,有 14 个 SNP 与 ΔVO(2)60 显著相关(P ≤ 0.005),与 ΔWORK60 和 ΔQ60 相关的性状也有相关性(P < 0.05)。单体型分析为 ΔVO(2)60 提供了几个强信号(P < 1.0 × 10(-5))。总体而言,关联分析缩小了目标区域,并包括了潜在的生物学候选基因(MIPEP 和 SGCG)。与高达 23%的最大遗传率估计一致,多达 20%的 ΔVO(2)60 表型变异可以由这些 SNP 来解释。这些结果表明,染色体 13q12 上的候选基因与定期运动后提高次最大运动能力的能力有关。60%最大摄氧量的次最大运动强度处于美国人体育活动指南推荐的范围内,因此具有潜在的公共卫生相关性。

相似文献

1
Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.
Eur J Appl Physiol. 2012 Aug;112(8):2969-78. doi: 10.1007/s00421-011-2274-8. Epub 2011 Dec 15.
2
Genome-wide linkage scan for submaximal exercise heart rate in the HERITAGE family study.
Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3366-71. doi: 10.1152/ajpheart.00042.2007. Epub 2007 Oct 5.
3
Heritability of submaximal exercise heart rate response to exercise training is accounted for by nine SNPs.
J Appl Physiol (1985). 2012 Mar;112(5):892-7. doi: 10.1152/japplphysiol.01287.2011. Epub 2011 Dec 15.
4
CREB1 is a strong genetic predictor of the variation in exercise heart rate response to regular exercise: the HERITAGE Family Study.
Circ Cardiovasc Genet. 2010 Jun;3(3):294-9. doi: 10.1161/CIRCGENETICS.109.925644. Epub 2010 Apr 20.
5
Quantitative trait loci for maximal exercise capacity phenotypes and their responses to training in the HERITAGE Family Study.
Physiol Genomics. 2004 Jan 15;16(2):256-60. doi: 10.1152/physiolgenomics.00035.2003.
6
Omics-driven investigation of the biology underlying intrinsic submaximal working capacity and its trainability.
Physiol Genomics. 2023 Nov 1;55(11):517-543. doi: 10.1152/physiolgenomics.00163.2022. Epub 2023 Sep 4.
7
Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans.
J Appl Physiol (1985). 2010 Jun;108(6):1487-96. doi: 10.1152/japplphysiol.01295.2009. Epub 2010 Feb 4.
9
Genome-wide linkage scan for exercise stroke volume and cardiac output in the HERITAGE Family Study.
Physiol Genomics. 2002 Aug 14;10(2):57-62. doi: 10.1152/physiolgenomics.00043.2002.
10
KIF5B gene sequence variation and response of cardiac stroke volume to regular exercise.
Physiol Genomics. 2009 Jan 8;36(2):79-88. doi: 10.1152/physiolgenomics.00003.2008. Epub 2008 Nov 4.

引用本文的文献

1
Omics-driven investigation of the biology underlying intrinsic submaximal working capacity and its trainability.
Physiol Genomics. 2023 Nov 1;55(11):517-543. doi: 10.1152/physiolgenomics.00163.2022. Epub 2023 Sep 4.
2
Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing.
Eur J Appl Physiol. 2022 Aug;122(8):1811-1830. doi: 10.1007/s00421-022-04945-z. Epub 2022 Apr 16.
3
Whole Genome Interpretation for a Family of Five.
Front Genet. 2021 Mar 8;12:535123. doi: 10.3389/fgene.2021.535123. eCollection 2021.
4
Contribution of Chromosome 14 to Exercise Capacity and Training Responses in Mice.
Front Physiol. 2019 Sep 13;10:1165. doi: 10.3389/fphys.2019.01165. eCollection 2019.
5
Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism.
Front Genet. 2017 Jun 28;8:89. doi: 10.3389/fgene.2017.00089. eCollection 2017.
6
Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans.
Eur J Appl Physiol. 2016 May;116(5):947-57. doi: 10.1007/s00421-016-3353-7. Epub 2016 Mar 21.
7
No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes.
PLoS One. 2016 Jan 29;11(1):e0147330. doi: 10.1371/journal.pone.0147330. eCollection 2016.
9
Maximal oxygen consumption in healthy humans: theories and facts.
Eur J Appl Physiol. 2014 Oct;114(10):2007-36. doi: 10.1007/s00421-014-2911-0. Epub 2014 Jul 2.
10
Advances in exercise, fitness, and performance genomics in 2012.
Med Sci Sports Exerc. 2013 May;45(5):824-31. doi: 10.1249/MSS.0b013e31828b28a3.

本文引用的文献

1
Advances in exercise, fitness, and performance genomics in 2010.
Med Sci Sports Exerc. 2011 May;43(5):743-52. doi: 10.1249/MSS.0b013e3182155d21.
4
Revised spectrum of mutations in sarcoglycanopathies.
Eur J Hum Genet. 2008 Jul;16(7):793-803. doi: 10.1038/ejhg.2008.9. Epub 2008 Feb 20.
5
PLINK: a tool set for whole-genome association and population-based linkage analyses.
Am J Hum Genet. 2007 Sep;81(3):559-75. doi: 10.1086/519795. Epub 2007 Jul 25.
6
Efficiency and power in genetic association studies.
Nat Genet. 2005 Nov;37(11):1217-23. doi: 10.1038/ng1669. Epub 2005 Oct 23.
7
Haploview: analysis and visualization of LD and haplotype maps.
Bioinformatics. 2005 Jan 15;21(2):263-5. doi: 10.1093/bioinformatics/bth457. Epub 2004 Aug 5.
9
Determination of mixed venous CO2 tensions by rebreathing.
J Appl Physiol. 1956 Jul;9(1):25-9. doi: 10.1152/jappl.1956.9.1.25.
10
Powerful regression-based quantitative-trait linkage analysis of general pedigrees.
Am J Hum Genet. 2002 Aug;71(2):238-53. doi: 10.1086/341560. Epub 2002 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验