Schrödle Birgit, Held Leonhard, Rue Håvard
Division of Biostatistics, Institute for Social and Preventive Medicine, University of Zurich, Hirschengraben 84, 8001 Zurich, Switzerland.
Biometrics. 2012 Sep;68(3):736-44. doi: 10.1111/j.1541-0420.2011.01717.x. Epub 2011 Dec 16.
Linking information on a movement network with space-time data on disease incidence is one of the key challenges in infectious disease epidemiology. In this article, we propose and compare two statistical frameworks for this purpose, namely, parameter-driven (PD) and observation-driven (OD) models. Bayesian inference in PD models is done using integrated nested Laplace approximations, while OD models can be easily fitted with existing software using maximum likelihood. The predictive performance of both formulations is assessed using proper scoring rules. As a case study, the impact of cattle trade on the spatiotemporal spread of Coxiellosis in Swiss cows, 2004-2009, is finally investigated.
将移动网络信息与疾病发病率的时空数据相联系是传染病流行病学的关键挑战之一。在本文中,我们为此目的提出并比较了两种统计框架,即参数驱动(PD)模型和观测驱动(OD)模型。PD模型中的贝叶斯推断使用积分嵌套拉普拉斯近似法完成,而OD模型可以使用现有软件通过最大似然法轻松拟合。两种模型的预测性能均使用适当的评分规则进行评估。作为一个案例研究,最终调查了2004 - 2009年牛贸易对瑞士奶牛中Q热时空传播的影响。