Suppr超能文献

用于高效转化 C1 气体为生物化学物质的产乙酸菌的合成生物学。

Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals.

机构信息

Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

出版信息

Int J Mol Sci. 2020 Oct 15;21(20):7639. doi: 10.3390/ijms21207639.

Abstract

Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.

摘要

合成气主要由化石燃料或生物质气化产生,由一氧化碳、二氧化碳和甲烷等 C1 气体以及氢气组成。产乙酸菌(acetogens)已成为一种替代解决方案,可以通过利用伍德-吕尔道途径将 C1 气体转化为增值生化物质来回收它们。尽管利用产乙酸菌作为生物催化剂具有优势,但由于其生长缓慢和生产率低,很难开发工业规模的生物工艺。为了解决这些问题,已经应用了传统的代谢工程方法;然而,由于缺乏调节其代谢途径所需的遗传生物部件,存在一些限制。最近,基于遗传部件、模块和电路设计的合成生物学已被积极用于克服产乙酸菌工程中的限制。这篇综述涵盖了合成生物学在设计和构建工业平台产乙酸菌方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be27/7589590/35ca024a69bd/ijms-21-07639-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验