Suppr超能文献

超相对论性纳米等离子体学作为产生超强阿秒脉冲的途径。

Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses.

作者信息

Gonoskov A A, Korzhimanov A V, Kim A V, Marklund M, Sergeev A M

机构信息

Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046403. doi: 10.1103/PhysRevE.84.046403. Epub 2011 Oct 10.

Abstract

The generation of ultrastrong attosecond pulses through laser-plasma interactions offers the opportunity to surpass the intensity of any known laboratory radiation source, giving rise to new experimental possibilities, such as quantum electrodynamical tests and matter probing at extremely short scales. Here we demonstrate that a laser irradiated plasma surface can act as an efficient converter from the femto- to the attosecond range, giving a dramatic rise in pulse intensity. Although seemingly similar schemes have been described in the literature, the present setup differs significantly from the previous attempts. We present a model describing the nonlinear process of relativistic laser-plasma interaction. This model, which is applicable to a multitude of phenomena, is shown to be in excellent agreement with particle-in-cell simulations. The model makes it possible to determine a parameter region where the energy conversion from the femto- to the attosecond regime is maximal. Based on the study we propose a concept of laser pulse interaction with a target having a groove-shaped surface, which opens up the potential to exceed an intensity level of 10(26) W/cm(2) and observe effects due to nonlinear quantum electrodynamics with upcoming laser sources.

摘要

通过激光与等离子体相互作用产生超强阿秒脉冲,为超越任何已知实验室辐射源的强度提供了契机,从而带来了新的实验可能性,比如量子电动力学测试以及在极短尺度下对物质进行探测。在此,我们证明激光辐照的等离子体表面可作为从飞秒到阿秒范围的高效转换器,使脉冲强度急剧增加。尽管文献中已描述了看似类似的方案,但当前装置与之前的尝试有显著不同。我们提出了一个描述相对论性激光与等离子体相互作用非线性过程的模型。该模型适用于多种现象,且与粒子模拟结果高度吻合。此模型能够确定从飞秒到阿秒 regime 能量转换最大的参数区域。基于该研究,我们提出了一种激光脉冲与具有凹槽形表面的靶相互作用的概念,这为超过 10(26) W/cm(2) 的强度水平并利用即将出现的激光源观测非线性量子电动力学效应开辟了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验