Gonoskov A, Wallin E, Polovinkin A, Meyerov I
University of Gothenburg, SE-41296, Gothenburg, Sweden.
Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
Sci Rep. 2019 May 7;9(1):7043. doi: 10.1038/s41598-019-43465-3.
The validation of a theory is commonly based on appealing to clearly distinguishable and describable features in properly reduced experimental data, while the use of ab-initio simulation for interpreting experimental data typically requires complete knowledge about initial conditions and parameters. We here apply the methodology of using machine learning for overcoming these natural limitations. We outline some basic universal ideas and show how we can use them to resolve long-standing theoretical and experimental difficulties in the problem of high-intensity laser-plasma interactions. In particular we show how an artificial neural network can "read" features imprinted in laser-plasma harmonic spectra that are currently analysed with spectral interferometry.
理论的验证通常基于诉诸适当简化的实验数据中清晰可辨和可描述的特征,而使用从头算模拟来解释实验数据通常需要关于初始条件和参数的完整知识。我们在此应用机器学习方法来克服这些自然限制。我们概述了一些基本的通用思想,并展示了如何利用它们来解决高强度激光与等离子体相互作用问题中长期存在的理论和实验难题。特别是,我们展示了人工神经网络如何能够“读取”目前通过光谱干涉测量法分析的激光等离子体谐波光谱中所印记的特征。