Xiao Tailong, Huang Jingzheng, Fan Jianping, Zeng Guihua
State Key Laboratory of Advanced Optical Communication Systems and Networks, and Center of Quantum Information Sensing and Processing, Shanghai Jiao Tong University, Shanghai, 200240, China.
Department of Computer Science, University of North Carolina-Charlotte, Charlotte, North Carolina, 28223, USA.
Sci Rep. 2019 Aug 27;9(1):12410. doi: 10.1038/s41598-019-48551-0.
Making use of the general physical model of the Mach-Zehnder interferometer with photon loss which is a fundamental physical issue, we investigate the continuous-variable quantum phase estimation based on machine learning approach, and an efficient recursive Bayesian estimation algorithm for Gaussian states phase estimation has been proposed. With the proposed algorithm, the performance of the phase estimation may be improved distinguishably. For example, the physical limits (i.e., the standard quantum limit and Heisenberg limit) for the phase estimation precision may be reached in more efficient ways especially in the situation of the prior information being employed, the range for the estimated phase parameter can be extended from [0, π/2] to [0, 2π] compared with the conventional approach, and influences of the photon losses on the output parameter estimation precision may be suppressed dramatically in terms of saturating the lossy bound. In addition, the proposed algorithm can be extended to the time-variable or multi-parameter estimation framework.
利用马赫-曾德尔干涉仪带有光子损失的一般物理模型这一基本物理问题,我们基于机器学习方法研究连续变量量子相位估计,并提出了一种用于高斯态相位估计的高效递归贝叶斯估计算法。使用所提出的算法,相位估计的性能可得到显著改善。例如,相位估计精度的物理极限(即标准量子极限和海森堡极限)可以通过更有效的方式达到,特别是在采用先验信息的情况下;与传统方法相比,估计相位参数的范围可以从[0, π/2]扩展到[0, 2π];并且在达到有损耗界限方面,光子损失对输出参数估计精度的影响可以被显著抑制。此外,所提出的算法可以扩展到时变或多参数估计框架。