Suppr超能文献

拓展蛋白质-配体对接中的构象选择范式。

Expanding the conformational selection paradigm in protein-ligand docking.

作者信息

Kuzu Guray, Keskin Ozlem, Gursoy Attila, Nussinov Ruth

机构信息

Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, Istanbul, Turkey.

出版信息

Methods Mol Biol. 2012;819:59-74. doi: 10.1007/978-1-61779-465-0_5.

Abstract

Conformational selection emerges as a theme in macromolecular interactions. Data validate it as a prevailing mechanism in protein-protein, protein-DNA, protein-RNA, and protein-small molecule drug recognition. This raises the question of whether this fundamental biomolecular binding mechanism can be used to improve drug docking and discovery. Actually, in practice this has already been taking place for some years in increasing numbers. Essentially, it argues for using not a single conformer, but an ensemble. The paradigm of conformational selection holds that because the ensemble is heterogeneous, within it there will be states whose conformation matches that of the ligand. Even if the population of this state is low, since it is favorable for binding the ligand, it will bind to it with a subsequent population shift toward this conformer. Here we suggest expanding it by first modeling all protein interactions in the cell by using Prism, an efficient motif-based protein-protein interaction modeling strategy, followed by ensemble generation. Such a strategy could be particularly useful for signaling proteins, which are major targets in drug discovery and bind multiple partners through a shared binding site, each with some-minor or major-conformational change.

摘要

构象选择成为大分子相互作用中的一个主题。数据证实它是蛋白质-蛋白质、蛋白质-DNA、蛋白质-RNA和蛋白质-小分子药物识别中的一种普遍机制。这就提出了一个问题,即这种基本的生物分子结合机制是否可用于改进药物对接和发现。实际上,在实践中,这种情况已经存在了数年,而且越来越多。从本质上讲,它主张使用的不是单一构象体,而是一个集合。构象选择的范式认为,由于集合是异质的,其中会存在构象与配体匹配的状态。即使这种状态的数量很少,由于它有利于与配体结合,它将与配体结合,随后群体向这种构象体转移。在这里,我们建议通过首先使用Prism(一种基于基序的高效蛋白质-蛋白质相互作用建模策略)对细胞中的所有蛋白质相互作用进行建模,然后生成集合来扩展它。这样的策略对于信号蛋白可能特别有用,信号蛋白是药物发现中的主要靶点,通过一个共享的结合位点与多个伙伴结合,每个伙伴都有一些——小的或大的——构象变化。

相似文献

8
Machine learning in computational docking.计算对接中的机器学习。
Artif Intell Med. 2015 Mar;63(3):135-52. doi: 10.1016/j.artmed.2015.02.002. Epub 2015 Feb 16.
10
The 6th Computational Structural Bioinformatics Workshop.第六届计算结构生物信息学研讨会
BMC Struct Biol. 2013;13 Suppl 1(Suppl 1):I1. doi: 10.1186/1472-6807-13-S1-I1. Epub 2013 Nov 8.

引用本文的文献

6
SMMRNA: a database of small molecule modulators of RNA.SMMRNA:小分子 RNA 调节剂数据库。
Nucleic Acids Res. 2014 Jan;42(Database issue):D132-41. doi: 10.1093/nar/gkt976. Epub 2013 Oct 24.

本文引用的文献

5
Allostery and population shift in drug discovery.变构和药物发现中的群体转移。
Curr Opin Pharmacol. 2010 Dec;10(6):715-22. doi: 10.1016/j.coph.2010.09.002. Epub 2010 Sep 29.
10
HotPoint: hot spot prediction server for protein interfaces.热点:用于蛋白质界面的热点预测服务器。
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W402-6. doi: 10.1093/nar/gkq323. Epub 2010 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验