Suppr超能文献

将离群值检测与替换纳入用于扩散磁共振图像运动和畸变校正的非参数框架。

Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images.

作者信息

Andersson Jesper L R, Graham Mark S, Zsoldos Enikő, Sotiropoulos Stamatios N

机构信息

FMRIB Centre, Oxford University, Oxford, United Kingdom.

Centre for Medical Image Computing & Department of Computer Science, University College London, London, United Kingdom.

出版信息

Neuroimage. 2016 Nov 1;141:556-572. doi: 10.1016/j.neuroimage.2016.06.058. Epub 2016 Jul 5.

Abstract

Despite its great potential in studying brain anatomy and structure, diffusion magnetic resonance imaging (dMRI) is marred by artefacts more than any other commonly used MRI technique. In this paper we present a non-parametric framework for detecting and correcting dMRI outliers (signal loss) caused by subject motion. Signal loss (dropout) affecting a whole slice, or a large connected region of a slice, is frequently observed in diffusion weighted images, leading to a set of unusable measurements. This is caused by bulk (subject or physiological) motion during the diffusion encoding part of the imaging sequence. We suggest a method to detect slices affected by signal loss and replace them by a non-parametric prediction, in order to minimise their impact on subsequent analysis. The outlier detection and replacement, as well as correction of other dMRI distortions (susceptibility-induced distortions, eddy currents (EC) and subject motion) are performed within a single framework, allowing the use of an integrated approach for distortion correction. Highly realistic simulations have been used to evaluate the method with respect to its ability to detect outliers (types 1 and 2 errors), the impact of outliers on retrospective correction of movement and distortion and the impact on estimation of commonly used diffusion tensor metrics, such as fractional anisotropy (FA) and mean diffusivity (MD). Data from a large imaging project studying older adults (the Whitehall Imaging sub-study) was used to demonstrate the utility of the method when applied to datasets with severe subject movement. The results indicate high sensitivity and specificity for detecting outliers and that their deleterious effects on FA and MD can be almost completely corrected.

摘要

尽管扩散磁共振成像(dMRI)在研究脑解剖结构方面具有巨大潜力,但与其他常用的磁共振成像技术相比,它受伪影的影响更大。在本文中,我们提出了一个非参数框架,用于检测和校正由受试者运动引起的dMRI异常值(信号丢失)。在扩散加权图像中经常观察到影响整个切片或切片的大连接区域的信号丢失(信号缺失),这会导致一组无法使用的测量值。这是由成像序列的扩散编码部分中的整体(受试者或生理)运动引起的。我们提出了一种方法来检测受信号丢失影响的切片,并用非参数预测来替换它们,以最小化它们对后续分析的影响。异常值检测和替换,以及其他dMRI畸变(敏感性诱导畸变、涡流(EC)和受试者运动)的校正,都在一个单一框架内进行,允许使用综合方法进行畸变校正。我们使用高度逼真的模拟来评估该方法在检测异常值(1型和2型错误)方面的能力、异常值对运动和畸变的回顾性校正的影响以及对常用扩散张量指标(如分数各向异性(FA)和平均扩散率(MD))估计的影响。来自一项研究老年人的大型成像项目(白厅成像子研究)的数据被用来证明该方法在应用于具有严重受试者运动的数据集时的实用性。结果表明,该方法在检测异常值方面具有高灵敏度和特异性,并且它们对FA和MD的有害影响几乎可以完全校正。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验