Suppr超能文献

1 型糖尿病相关 HLA-DQ8 二聚体容纳独特的肽库。

Type 1 diabetes-associated HLA-DQ8 transdimer accommodates a unique peptide repertoire.

机构信息

Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

J Biol Chem. 2012 Mar 16;287(12):9514-24. doi: 10.1074/jbc.M111.313940. Epub 2011 Dec 19.

Abstract

HLA-DQ2 and HLA-DQ8 are strongly predisposing haplotypes for type 1 diabetes (T1D). Yet HLA-DQ2/8 heterozygous individuals have a synergistically increased risk compared with HLA-DQ2 or HLA-DQ8 homozygote subjects that may result from the presence of a transdimer formed between the α-chain of HLA-DQ2 (DQA105:01) and the β-chain of HLA-DQ8 (DQB103:02). We generated cells exclusively expressing this transdimer (HLA-DQ8trans), characterized its peptide binding repertoire, and defined a unique transdimer-specific peptide binding motif that was found to be distinct from those of HLA-DQ2 and HLA-DQ8. This motif predicts an array of peptides of islet autoantigens as candidate T cell epitopes, many of which selectively bind to the HLA transdimer, whereas others bind to both HLA-DQ8 and transdimer with similar affinity. Our findings provide a molecular basis for the association between HLA-DQ transdimers and T1D and set the stage for rational testing of potential diabetogenic peptide epitopes.

摘要

HLA-DQ2 和 HLA-DQ8 是 1 型糖尿病(T1D)的强烈易感单倍型。然而,与 HLA-DQ2 或 HLA-DQ8 纯合子个体相比,HLA-DQ2/8 杂合子个体的风险呈协同增加,这可能是由于 HLA-DQ2 的α链(DQA105:01)和 HLA-DQ8 的β链(DQB103:02)之间形成的二聚体的存在所致。我们生成了仅表达这种二聚体的细胞(HLA-DQ8trans),对其肽结合库进行了表征,并定义了一个独特的二聚体特异性肽结合基序,该基序与 HLA-DQ2 和 HLA-DQ8 的基序不同。该基序预测了一系列胰岛自身抗原的肽作为候选 T 细胞表位,其中许多肽选择性地与 HLA 二聚体结合,而其他肽与 HLA-DQ8 和二聚体的亲和力相似。我们的研究结果为 HLA-DQ 二聚体与 T1D 之间的关联提供了分子基础,并为潜在的致糖尿病肽表位的合理测试奠定了基础。

相似文献

1
Type 1 diabetes-associated HLA-DQ8 transdimer accommodates a unique peptide repertoire.
J Biol Chem. 2012 Mar 16;287(12):9514-24. doi: 10.1074/jbc.M111.313940. Epub 2011 Dec 19.
2
Gluten-specific T cells cross-react between HLA-DQ8 and the HLA-DQ2α/DQ8β transdimer.
J Immunol. 2011 Nov 15;187(10):5123-9. doi: 10.4049/jimmunol.1101179. Epub 2011 Oct 17.
6
Discovery of a Selective Islet Peptidome Presented by the Highest-Risk HLA-DQ8trans Molecule.
Diabetes. 2016 Mar;65(3):732-41. doi: 10.2337/db15-1031. Epub 2015 Dec 30.
8
HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease.
J Clin Invest. 2006 Aug;116(8):2226-36. doi: 10.1172/JCI27620. Epub 2006 Jul 27.
9
Differences in self-peptide binding between T1D-related susceptible and protective DR4 subtypes.
J Autoimmun. 2011 Mar;36(2):155-60. doi: 10.1016/j.jaut.2010.12.004. Epub 2011 Jan 22.

引用本文的文献

1
Clinical settings in which human leukocyte antigen typing is still useful in the diagnosis of celiac disease.
World J Gastroenterol. 2025 Apr 14;31(14):104397. doi: 10.3748/wjg.v31.i14.104397.
3
A Tool for the Assessment of HLA-DQ Heterodimer Variation in Hematopoietic Cell Transplantation.
Transplant Cell Ther. 2024 Nov;30(11):1084.e1-1084.e15. doi: 10.1016/j.jtct.2024.08.006. Epub 2024 Aug 15.
4
The good and the bad of T cell cross-reactivity: challenges and opportunities for novel therapeutics in autoimmunity and cancer.
Front Immunol. 2023 Jun 19;14:1212546. doi: 10.3389/fimmu.2023.1212546. eCollection 2023.
5
WDFY4 deficiency in NOD mice ameliorates autoimmune diabetes and insulitis.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2219956120. doi: 10.1073/pnas.2219956120. Epub 2023 Mar 20.
6
Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms.
Vaccines (Basel). 2023 Feb 10;11(2):408. doi: 10.3390/vaccines11020408.
7
Functional Impact of Risk Gene Variants on the Autoimmune Responses in Type 1 Diabetes.
Front Immunol. 2022 May 4;13:886736. doi: 10.3389/fimmu.2022.886736. eCollection 2022.
8
HLA-DQ heterodimers in hematopoietic cell transplantation.
Blood. 2022 May 19;139(20):3009-3017. doi: 10.1182/blood.2022015860.
9
Influence of Allotypes on Innate and Adaptive Immune Function in Health and Disease.
Front Immunol. 2021 Feb 25;12:636618. doi: 10.3389/fimmu.2021.636618. eCollection 2021.
10
HLA class II genes in precision-based care of childhood diseases: what we can learn from celiac disease.
Pediatr Res. 2021 Jan;89(2):307-312. doi: 10.1038/s41390-020-01217-4. Epub 2020 Oct 29.

本文引用的文献

1
Gluten-specific T cells cross-react between HLA-DQ8 and the HLA-DQ2α/DQ8β transdimer.
J Immunol. 2011 Nov 15;187(10):5123-9. doi: 10.4049/jimmunol.1101179. Epub 2011 Oct 17.
2
Functional consequences of HLA-DQ8 homozygosity versus heterozygosity for islet autoimmunity in type 1 diabetes.
Genes Immun. 2011 Sep;12(6):415-27. doi: 10.1038/gene.2011.24. Epub 2011 May 12.
3
Type 1 diabetes: etiology, immunology, and therapeutic strategies.
Physiol Rev. 2011 Jan;91(1):79-118. doi: 10.1152/physrev.00003.2010.
4
Genetics, pathogenesis and clinical interventions in type 1 diabetes.
Nature. 2010 Apr 29;464(7293):1293-300. doi: 10.1038/nature08933.
6
Improved visualization of protein consensus sequences by iceLogo.
Nat Methods. 2009 Nov;6(11):786-7. doi: 10.1038/nmeth1109-786.
7
Genetics of type 1A diabetes.
N Engl J Med. 2009 Apr 16;360(16):1646-54. doi: 10.1056/NEJMra0808284.
8
Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2.
J Immunol. 2008 Mar 1;180(5):3268-78. doi: 10.4049/jimmunol.180.5.3268.
10
The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function.
Immunogenetics. 2007 Jul;59(7):539-53. doi: 10.1007/s00251-007-0224-8. Epub 2007 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验