Suppr超能文献

通过类 I tRNA 合成酶催化结构域的灵活调节适应 tRNA 受体茎结构。

Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.

机构信息

Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

RNA. 2012 Feb;18(2):213-21. doi: 10.1261/rna.029983.111. Epub 2011 Dec 19.

Abstract

Class I aminoacyl-tRNA synthetases (aaRSs) use a Rossmann-fold domain to catalyze the synthesis of aminoacyl-tRNAs required for decoding genetic information. While the Rossmann-fold domain is conserved in evolution, the acceptor stem near the aminoacylation site varies among tRNA substrates, raising the question of how the conserved protein fold adapts to RNA sequence variations. Of interest is the existence of an unpaired C-A mismatch at the 1-72 position unique to bacterial initiator tRNA(fMet) and absent from elongator tRNAs. Here we show that the class I methionyl-tRNA synthetase (MetRS) of Escherichia coli and its close structural homolog cysteinyl-tRNA synthetase (CysRS) display distinct patterns of recognition of the 1-72 base pair. While the structural homology of the two enzymes in the Rossmann-fold domain is manifested in a common burst feature of aminoacylation kinetics, CysRS discriminates against unpaired 1-72, whereas MetRS lacks such discrimination. A structure-based alignment of the Rossmann fold identifies the insertion of an α-helical motif, specific to CysRS but absent from MetRS, which docks on 1-72 and may discriminate against mismatches. Indeed, substitutions of the CysRS helical motif abolish the discrimination against unpaired 1-72. Additional structural alignments reveal that with the exception of MetRS, class I tRNA synthetases contain a structural motif that docks on 1-72. This work demonstrates that by flexible insertion of a structural motif to dock on 1-72, the catalytic domain of class I tRNA synthetases can acquire structural plasticity to adapt to changes at the end of the tRNA acceptor stem.

摘要

I 类氨酰-tRNA 合成酶(aaRSs)利用 Rossmann 折叠结构域催化合成用于解码遗传信息的氨酰-tRNA。虽然 Rossmann 折叠结构域在进化中是保守的,但接近氨酰化位点的接受茎在 tRNA 底物中存在差异,这就提出了一个问题,即保守的蛋白质折叠如何适应 RNA 序列的变化。有趣的是,细菌起始 tRNA(fMet)中存在独特的 1-72 位未配对的 C-A 错配,而延伸 tRNA 中则没有。在这里,我们展示了大肠杆菌的 I 类甲硫氨酰-tRNA 合成酶(MetRS)及其紧密结构同源物半胱氨酰-tRNA 合成酶(CysRS)对 1-72 碱基对的识别模式存在明显差异。尽管这两种酶在 Rossmann 折叠结构域的结构同源性表现为氨酰化动力学的共同爆发特征,但 CysRS 对未配对的 1-72 具有鉴别能力,而 MetRS 则缺乏这种鉴别能力。基于结构的 Rossmann 折叠比对确定了插入一个螺旋结构基序,该基序特异性存在于 CysRS 中而不存在于 MetRS 中,它与 1-72 对接,并可能对错配进行鉴别。事实上,CysRS 螺旋结构基序的取代会消除对未配对 1-72 的鉴别能力。额外的结构比对表明,除了 MetRS 之外,I 类 tRNA 合成酶还含有一个结构基序,该基序与 1-72 对接。这项工作表明,通过将一个结构基序灵活地插入到 1-72 对接,I 类 tRNA 合成酶的催化结构域可以获得结构可塑性,以适应 tRNA 接受茎末端的变化。

相似文献

4
Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site.
Biochemistry. 2011 Feb 8;50(5):763-9. doi: 10.1021/bi101375d. Epub 2011 Jan 11.
5
Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
Biochemistry. 2005 May 17;44(19):7240-9. doi: 10.1021/bi050285y.
6
Effect of a domain-spanning disulfide on aminoacyl-tRNA synthetase activity.
Biochemistry. 2009 Oct 27;48(42):10113-9. doi: 10.1021/bi9012275.
7
Domain-domain communication in aminoacyl-tRNA synthetases.
Prog Nucleic Acid Res Mol Biol. 2001;69:317-49. doi: 10.1016/s0079-6603(01)69050-0.
8
Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
J Mol Biol. 2006 Aug 11;361(2):300-11. doi: 10.1016/j.jmb.2006.06.015. Epub 2006 Jun 27.
9
Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold.
Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2261-5. doi: 10.1073/pnas.90.6.2261.
10
Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
J Bacteriol. 1992 Dec;174(23):7819-26. doi: 10.1128/jb.174.23.7819-7826.1992.

引用本文的文献

1
Cys-tRNAj as a Second Translation Initiator for Priming Proteins with Cysteine in Bacteria.
ACS Omega. 2025 Jan 29;10(5):4548-4560. doi: 10.1021/acsomega.4c08326. eCollection 2025 Feb 11.
2
Naturally Occurring tRNAs With Non-canonical Structures.
Front Microbiol. 2020 Oct 21;11:596914. doi: 10.3389/fmicb.2020.596914. eCollection 2020.
3
A Label-Free Assay for Aminoacylation of tRNA.
Genes (Basel). 2020 Oct 7;11(10):1173. doi: 10.3390/genes11101173.
4
Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes.
Neurol Genet. 2019 Apr 18;5(2):e565. doi: 10.1212/NXG.0000000000000316. eCollection 2019 Apr.
6
Effect of Nascent Peptide Steric Bulk on Elongation Kinetics in the Ribosome Exit Tunnel.
J Mol Biol. 2017 Jun 16;429(12):1873-1888. doi: 10.1016/j.jmb.2017.04.019. Epub 2017 May 5.
7
Transfer RNAs with novel cloverleaf structures.
Nucleic Acids Res. 2017 Mar 17;45(5):2776-2785. doi: 10.1093/nar/gkw898.
8
A genetically encoded fluorescent tRNA is active in live-cell protein synthesis.
Nucleic Acids Res. 2017 Apr 20;45(7):4081-4093. doi: 10.1093/nar/gkw1229.
9
Molecular Basis and Consequences of the Cytochrome c-tRNA Interaction.
J Biol Chem. 2016 May 6;291(19):10426-36. doi: 10.1074/jbc.M115.697789. Epub 2016 Mar 9.
10
Kinetic Analysis of tRNA Methyltransferases.
Methods Enzymol. 2015;560:91-116. doi: 10.1016/bs.mie.2015.04.012. Epub 2015 Jun 2.

本文引用的文献

2
Modeling of tRNA-assisted mechanism of Arg activation based on a structure of Arg-tRNA synthetase, tRNA, and an ATP analog (ANP).
FEBS J. 2009 Sep;276(17):4763-79. doi: 10.1111/j.1742-4658.2009.07178.x. Epub 2009 Jul 27.
3
Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys).
Nat Struct Mol Biol. 2008 May;15(5):507-14. doi: 10.1038/nsmb.1423. Epub 2008 Apr 20.
4
Kinetic quality control of anticodon recognition by a eukaryotic aminoacyl-tRNA synthetase.
J Mol Biol. 2007 Apr 6;367(4):1063-78. doi: 10.1016/j.jmb.2007.01.050. Epub 2007 Jan 24.
6
Distinct kinetic mechanisms of the two classes of Aminoacyl-tRNA synthetases.
J Mol Biol. 2006 Aug 11;361(2):300-11. doi: 10.1016/j.jmb.2006.06.015. Epub 2006 Jun 27.
7
Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis.
EMBO J. 2006 Jun 21;25(12):2919-29. doi: 10.1038/sj.emboj.7601154. Epub 2006 May 25.
8
Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
Nat Struct Mol Biol. 2005 Oct;12(10):915-22. doi: 10.1038/nsmb985. Epub 2005 Sep 11.
9
Structural basis for anticodon recognition by methionyl-tRNA synthetase.
Nat Struct Mol Biol. 2005 Oct;12(10):931-2. doi: 10.1038/nsmb988. Epub 2005 Sep 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验