Suppr超能文献

小区域健康数据中贝叶斯时空潜在模型的评估

Evaluation of Bayesian spatio-temporal latent models in small area health data.

作者信息

Choi Jungsoon, Lawson Andrew B, Cai Bo, Hossain Md Monir

机构信息

Division of Biostatistics and Epidemiology, College of Medicine, Medical University of South Carolina.

出版信息

Environmetrics. 2011 Dec;22(8):1008-1022. doi: 10.1002/env.1127.

Abstract

Health outcomes are linked to air pollution, demographic, or socioeconomic factors which vary across space and time. Thus, it is often found that relative risks in space-time health data have locally different temporal patterns. In such cases, latent modeling is useful in the disaggregation of risk profiles. In particular, spatio-temporal mixture models can help to isolate spatial clusters each of which has a homogeneous temporal pattern in relative risks. In mixture modeling, various weight structures can be used and two situations can be considered: the number of underlying components is known or unknown. In this paper, we compare spatio-temporal mixture models with different weight structures in both situations. In addition, spatio-temporal Dirichlet process mixture models are compared to them when the number of components is unknown. For comparison, we propose a set of spatial cluster detection diagnostics based on the posterior distribution of the weights. We also develop new accuracy measures to assess the recovery of true relative risks. Based on the simulation study, we examine the performance of various spatio-temporal mixture models in terms of proposed methods and goodness-of-fit measures. We apply our models to a county-level chronic obstructive pulmonary disease data set from the state of Georgia.

摘要

健康结果与空气污染、人口统计学或社会经济因素相关,这些因素会随时间和空间而变化。因此,人们常常发现时空健康数据中的相对风险具有局部不同的时间模式。在这种情况下,潜在模型对于风险概况的分解很有用。特别是,时空混合模型有助于分离出空间集群,每个集群在相对风险方面都有同质的时间模式。在混合建模中,可以使用各种权重结构,并且可以考虑两种情况:潜在成分的数量已知或未知。在本文中,我们比较了两种情况下具有不同权重结构的时空混合模型。此外,当成分数量未知时,将时空狄利克雷过程混合模型与它们进行比较。为了进行比较,我们基于权重的后验分布提出了一组空间集群检测诊断方法。我们还开发了新的准确性度量来评估真实相对风险的恢复情况。基于模拟研究,我们根据提出的方法和拟合优度度量来检验各种时空混合模型的性能。我们将我们的模型应用于来自佐治亚州的县级慢性阻塞性肺疾病数据集。

相似文献

1
Evaluation of Bayesian spatio-temporal latent models in small area health data.
Environmetrics. 2011 Dec;22(8):1008-1022. doi: 10.1002/env.1127.
3
A Bayesian latent model with spatio-temporally varying coefficients in low birth weight incidence data.
Stat Methods Med Res. 2012 Oct;21(5):445-56. doi: 10.1177/0962280212446318. Epub 2012 Apr 25.
4
Spatio-temporal patterning of small area low birth weight incidence and its correlates: a latent spatial structure approach.
Spat Spatiotemporal Epidemiol. 2011 Dec;2(4):265-71. doi: 10.1016/j.sste.2011.07.011.
5
Bayesian 2-Stage Space-Time Mixture Modeling With Spatial Misalignment of the Exposure in Small Area Health Data.
J Agric Biol Environ Stat. 2012 Sep;17(3):417-441. doi: 10.1007/s13253-012-0100-3. Epub 2012 Aug 9.
6
A spatio-temporal Dirichlet process mixture model for coronavirus disease-19.
Stat Med. 2023 Dec 30;42(30):5555-5576. doi: 10.1002/sim.9925. Epub 2023 Oct 9.
7
A Bayesian multistage spatio-temporally dependent model for spatial clustering and variable selection.
Stat Med. 2023 Nov 20;42(26):4794-4823. doi: 10.1002/sim.9889. Epub 2023 Aug 31.
8
Bayesian spatiotemporal crash frequency models with mixture components for space-time interactions.
Accid Anal Prev. 2018 Mar;112:84-93. doi: 10.1016/j.aap.2017.12.020. Epub 2018 Jan 8.
9
COVID-19 latent age-specific mortality in US states: a county-level spatio-temporal analysis with counterfactuals.
Front Epidemiol. 2024 Nov 11;4:1403212. doi: 10.3389/fepid.2024.1403212. eCollection 2024.
10
Spatio-temporal Bayesian model selection for disease mapping.
Environmetrics. 2016 Dec;27(8):466-478. doi: 10.1002/env.2410. Epub 2016 Sep 28.

引用本文的文献

1
Leveraging spatiotemporal Bayesian analysis to unravel polysubstance use and overdose risk: Opportunities and challenges.
Prev Med Rep. 2025 Feb 19;51:103012. doi: 10.1016/j.pmedr.2025.103012. eCollection 2025 Mar.
3
A Bayesian space-time model for clustering areal units based on their disease trends.
Biostatistics. 2019 Oct 1;20(4):681-697. doi: 10.1093/biostatistics/kxy024.
4
Bayesian 2-Stage Space-Time Mixture Modeling With Spatial Misalignment of the Exposure in Small Area Health Data.
J Agric Biol Environ Stat. 2012 Sep;17(3):417-441. doi: 10.1007/s13253-012-0100-3. Epub 2012 Aug 9.
5
Quantifying the Spatial Inequality and Temporal Trends in Maternal Smoking Rates in Glasgow.
Ann Appl Stat. 2016 Sep 28;10(3):1427-1446. doi: 10.1214/16-AOAS941.
6
A Bayesian latent model with spatio-temporally varying coefficients in low birth weight incidence data.
Stat Methods Med Res. 2012 Oct;21(5):445-56. doi: 10.1177/0962280212446318. Epub 2012 Apr 25.

本文引用的文献

2
Mortality in COPD: causes, risk factors, and prevention.
COPD. 2010 Oct;7(5):375-82. doi: 10.3109/15412555.2010.510160.
3
A spatial dirichlet process mixture model for clustering population genetics data.
Biometrics. 2011 Jun;67(2):381-90. doi: 10.1111/j.1541-0420.2010.01484.x. Epub 2010 Sep 3.
4
Space-time latent component modeling of geo-referenced health data.
Stat Med. 2010 Aug 30;29(19):2012-27. doi: 10.1002/sim.3917.
5
Spatial-temporal association between fine particulate matter and daily mortality.
Comput Stat Data Anal. 2009 Jun 15;53(8):2989-3000. doi: 10.1016/j.csda.2008.05.018.
6
An autoregressive approach to spatio-temporal disease mapping.
Stat Med. 2008 Jul 10;27(15):2874-89. doi: 10.1002/sim.3103.
7
Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality.
Stat Methods Med Res. 2008 Feb;17(1):97-118. doi: 10.1177/0962280207081243. Epub 2007 Sep 13.
8
Epidemiology of chronic obstructive pulmonary disease: health effects of air pollution.
Respirology. 2006 Sep;11(5):523-32. doi: 10.1111/j.1440-1843.2006.00886.x.
9
Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK).
Stat Methods Med Res. 2006 Aug;15(4):385-407. doi: 10.1191/0962280206sm458oa.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验