Kirby Russell S, Liu Jihong, Lawson Andrew B, Choi Jungsoon, Cai Bo, Hossain Monir
Department of Community and Family Health, College of Public Health, University of South Florida, Tampa, FL, USA.
Spat Spatiotemporal Epidemiol. 2011 Dec;2(4):265-71. doi: 10.1016/j.sste.2011.07.011.
Low birth weight (LBW) defined as infant weight at birth of less than 2500 g is a useful health outcome for exploring spatio-temporal variation and the role of covariates. LBW is a key measure of population health used by local, national and international health organizations. Yet its spatio-temporal patterns and their dependence structures are poorly understood. In this study we examine the use of flexible latent structure models for the analysis of spatio-temporal variation in LBW. Beyond the explanatory capabilities of well-known predictors, we observe spatio-temporal effects, which are not directly observable using conventional modeling approaches. Our analysis shows that for county-level counts of LBW in Georgia and South Carolina the proportion of black population is a positive risk factor while high-income is a negative risk factor. Two dominant residual temporal components are also estimated. Finally our proposed method provides a better goodness-of-fit to these data than the conventional space–time models.
低出生体重(LBW)定义为出生时体重不足2500克,是探索时空变化和协变量作用的一个有用的健康指标。低出生体重是地方、国家和国际卫生组织用于衡量人群健康的关键指标。然而,其时空模式及其依赖结构却鲜为人知。在本研究中,我们考察了灵活的潜在结构模型在分析低出生体重时空变化中的应用。除了众所周知的预测因素的解释能力外,我们还观察到了时空效应,而这些效应使用传统建模方法是无法直接观察到的。我们的分析表明,对于佐治亚州和南卡罗来纳州县级低出生体重数而言,黑人人口比例是一个正风险因素,而高收入是一个负风险因素。我们还估计了两个主要的剩余时间成分。最后,我们提出的方法比传统的时空模型对这些数据的拟合度更好。