Suppr超能文献

时空潜在成分建模的地理参考健康数据。

Space-time latent component modeling of geo-referenced health data.

机构信息

Division of Biostatistics and Epidemiology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Stat Med. 2010 Aug 30;29(19):2012-27. doi: 10.1002/sim.3917.

Abstract

Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made.

摘要

潜结构模型已在许多应用中提出。对于时空健康数据,通常重要的是能够找到时间上的潜在趋势,这些趋势得到小区域子集的支持。潜结构建模就是这种分析方法之一。本文提出了一种基于混合的方法,可应用于组件选择。介绍了对佐治亚州门诊哮喘县级数据集的分析,并进行了基于模拟的评估。

相似文献

1
Space-time latent component modeling of geo-referenced health data.
Stat Med. 2010 Aug 30;29(19):2012-27. doi: 10.1002/sim.3917.
2
A Bayesian two-stage spatially dependent variable selection model for space-time health data.
Stat Methods Med Res. 2019 Sep;28(9):2570-2582. doi: 10.1177/0962280218767980. Epub 2018 Apr 11.
3
Bayesian spatially dependent variable selection for small area health modeling.
Stat Methods Med Res. 2018 Jan;27(1):234-249. doi: 10.1177/0962280215627184. Epub 2016 Jun 16.
4
Bayesian 2-Stage Space-Time Mixture Modeling With Spatial Misalignment of the Exposure in Small Area Health Data.
J Agric Biol Environ Stat. 2012 Sep;17(3):417-441. doi: 10.1007/s13253-012-0100-3. Epub 2012 Aug 9.
5
Asthma Surveillance - United States, 2006-2018.
MMWR Surveill Summ. 2021 Sep 17;70(5):1-32. doi: 10.15585/mmwr.ss7005a1.
6
A cluster model for space-time disease counts.
Stat Med. 2006 Mar 15;25(5):867-81. doi: 10.1002/sim.2424.
7
A latent class distance association model for cross-classified data with a categorical response variable.
Br J Math Stat Psychol. 2014 Nov;67(3):514-40. doi: 10.1111/bmsp.12038. Epub 2014 Mar 24.
9
Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion.
Stat Med. 2000;19(17-18):2265-78. doi: 10.1002/1097-0258(20000915/30)19:17/18<2265::aid-sim568>3.0.co;2-6.
10
Hierarchical statistical modelling of influenza epidemic dynamics in space and time.
Stat Med. 2002 Sep 30;21(18):2703-21. doi: 10.1002/sim.1217.

引用本文的文献

1
A Bayesian space-time model for clustering areal units based on their disease trends.
Biostatistics. 2019 Oct 1;20(4):681-697. doi: 10.1093/biostatistics/kxy024.
2
MODELING TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA.
Ann Appl Stat. 2013;7(1):154-176. doi: 10.1214/12-AOAS600. Epub 2013 Apr 9.
3
Bayesian 2-Stage Space-Time Mixture Modeling With Spatial Misalignment of the Exposure in Small Area Health Data.
J Agric Biol Environ Stat. 2012 Sep;17(3):417-441. doi: 10.1007/s13253-012-0100-3. Epub 2012 Aug 9.
5
Functional CAR models for large spatially correlated functional datasets.
J Am Stat Assoc. 2016;111(514):772-786. doi: 10.1080/01621459.2015.1042581. Epub 2016 Aug 18.
6
Space-Time Areal Mixture Model: Relabeling Algorithm and Model Selection Issues.
Environmetrics. 2014 Mar;25(2):84-96. doi: 10.1002/env.2265.
7
Trends and geographic patterns in drug-poisoning death rates in the U.S., 1999-2009.
Am J Prev Med. 2013 Dec;45(6):e19-25. doi: 10.1016/j.amepre.2013.07.012.
8
Space-time stick-breaking processes for small area disease cluster estimation.
Environ Ecol Stat. 2013 Mar 1;20(1):91-107. doi: 10.1007/s10651-012-0209-0.
9
Prospective surveillance of multivariate spatial disease data.
Stat Methods Med Res. 2012 Oct;21(5):457-77. doi: 10.1177/0962280212446319. Epub 2012 Apr 25.
10
A Bayesian latent model with spatio-temporally varying coefficients in low birth weight incidence data.
Stat Methods Med Res. 2012 Oct;21(5):445-56. doi: 10.1177/0962280212446318. Epub 2012 Apr 25.

本文引用的文献

2
Penalized loss functions for Bayesian model comparison.
Biostatistics. 2008 Jul;9(3):523-39. doi: 10.1093/biostatistics/kxm049. Epub 2008 Jan 21.
3
An autoregressive approach to spatio-temporal disease mapping.
Stat Med. 2008 Jul 10;27(15):2874-89. doi: 10.1002/sim.3103.
5
Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality.
Stat Methods Med Res. 2008 Feb;17(1):97-118. doi: 10.1177/0962280207081243. Epub 2007 Sep 13.
6
Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models.
Biometrics. 2006 Dec;62(4):1197-206. doi: 10.1111/j.1541-0420.2006.00617.x.
7
Dynamic survival models with spatial frailty.
Lifetime Data Anal. 2006 Dec;12(4):441-60. doi: 10.1007/s10985-006-9020-2. Epub 2006 Sep 20.
8
Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks in Yorkshire (UK).
Stat Methods Med Res. 2006 Aug;15(4):385-407. doi: 10.1191/0962280206sm458oa.
9
Generalized spatial structural equation models.
Biostatistics. 2005 Oct;6(4):539-57. doi: 10.1093/biostatistics/kxi026. Epub 2005 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验