Suppr超能文献

用于疾病地图绘制的时空贝叶斯模型选择

Spatio-temporal Bayesian model selection for disease mapping.

作者信息

Carroll R, Lawson A B, Faes C, Kirby R S, Aregay M, Watjou K

机构信息

Department of Public Health, Medical University of South Carolina.

Interuniversity Institute for Statistics and Statistical Bioinformatics, Hasselt University.

出版信息

Environmetrics. 2016 Dec;27(8):466-478. doi: 10.1002/env.2410. Epub 2016 Sep 28.

Abstract

Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor.

摘要

小区域健康数据的时空分析通常涉及在最终模型拟合之前选择一组固定的预测变量。在本文中,我们提出了一种贝叶斯模型选择的时空方法,以便对研究区域的特定区域以及研究时间线中的特定年份进行模型选择。在此,我们通过大规模模拟研究并结合案例研究来检验这种方法的有效性。我们的结果表明,模型选择方法的一个特殊情况,即一个允许权重参数指示适当的线性预测变量是空间的、时空的还是两者混合的混合模型,为拟合这些时空模型提供了最佳选择。此外,案例研究通过轻松纳入生活方式、社会经济和物理环境变量以选择主要的时空线性预测变量,说明了这种混合模型在模型选择设置中的有效性。

相似文献

1
Spatio-temporal Bayesian model selection for disease mapping.用于疾病地图绘制的时空贝叶斯模型选择
Environmetrics. 2016 Dec;27(8):466-478. doi: 10.1002/env.2410. Epub 2016 Sep 28.
3
Spatially-dependent Bayesian model selection for disease mapping.用于疾病地图绘制的空间依赖贝叶斯模型选择
Stat Methods Med Res. 2018 Jan;27(1):250-268. doi: 10.1177/0962280215627298. Epub 2016 Jul 20.
5
Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.比较INLA和OpenBUGS在疾病地图分层泊松模型中的应用
Spat Spatiotemporal Epidemiol. 2015 Jul-Oct;14-15:45-54. doi: 10.1016/j.sste.2015.08.001. Epub 2015 Aug 11.
8
Online relative risks/rates estimation in spatial and spatio-temporal disease mapping.在线空间和时空疾病制图中的相对风险/率估计。
Comput Methods Programs Biomed. 2019 Apr;172:103-116. doi: 10.1016/j.cmpb.2019.02.014. Epub 2019 Feb 25.
10
Big problems in spatio-temporal disease mapping: Methods and software.时空疾病制图中的重大问题:方法与软件。
Comput Methods Programs Biomed. 2023 Apr;231:107403. doi: 10.1016/j.cmpb.2023.107403. Epub 2023 Feb 3.

引用本文的文献

本文引用的文献

1
Spatially-dependent Bayesian model selection for disease mapping.用于疾病地图绘制的空间依赖贝叶斯模型选择
Stat Methods Med Res. 2018 Jan;27(1):250-268. doi: 10.1177/0962280215627298. Epub 2016 Jul 20.
3
Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.比较INLA和OpenBUGS在疾病地图分层泊松模型中的应用
Spat Spatiotemporal Epidemiol. 2015 Jul-Oct;14-15:45-54. doi: 10.1016/j.sste.2015.08.001. Epub 2015 Aug 11.
5
7
Spatial and spatio-temporal models with R-INLA.使用R-INLA的空间和时空模型。
Spat Spatiotemporal Epidemiol. 2013 Mar;4:33-49. doi: 10.1016/j.sste.2012.12.001. Epub 2013 Jan 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验