Suppr超能文献

脊髓损伤后股骨骨密度的纵向变化:切片位置和去皮方法的影响。

Longitudinal changes in femur bone mineral density after spinal cord injury: effects of slice placement and peel method.

机构信息

Graduate Program in Physical Therapy and Rehabilitation Science, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA.

出版信息

Osteoporos Int. 2010 Jun;21(6):985-95. doi: 10.1007/s00198-009-1044-5. Epub 2009 Aug 26.

Abstract

SUMMARY

Surveillance of femur metaphysis bone mineral density (BMD) decline after spinal cord injury (SCI) may be subject to slice placement error of 2.5%. Adaptations to anti-osteoporosis measures should exceed this potential source of error. Image analysis parameters likewise affect BMD output and should be selected strategically in longitudinal studies.

INTRODUCTION

Understanding the longitudinal changes in bone mineral density (BMD) after spinal cord injury (SCI) is important when assessing new interventions. We determined the longitudinal effect of SCI on BMD of the femur metaphysis. To facilitate interpretation of longitudinal outcomes, we (1) determined the BMD difference associated with erroneous peripheral quantitative computed tomography (pQCT) slice placement, and (2) determined the effect of operator-selected pQCT peel algorithms on BMD.

METHODS

pQCT images were obtained from the femur metaphysis (12% of length from distal end) of adult subjects with and without SCI. Slice placement errors were simulated at 3 mm intervals and were processed in two ways (threshold-based vs. concentric peel).

RESULTS

BMD demonstrated a rapid decline over 2 years post-injury. BMD differences attributable to operator-selected peel methods were large (17.3% for subjects with SCI).

CONCLUSIONS

Femur metaphysis BMD declines after SCI in a manner similar to other anatomic sites. Concentric (percentage-based) peel methods may be most appropriate when special sensitivity is required to detect BMD adaptations. Threshold-based methods may be more appropriate when asymmetric adaptations are observed.

摘要

摘要

对脊髓损伤(SCI)后股骨干骺端骨密度(BMD)下降的监测可能存在 2.5%的切片放置误差。对抗骨质疏松措施的适应应超过这一潜在的误差源。图像分析参数同样会影响 BMD 的输出,在纵向研究中应战略性地选择。

引言

了解 SCI 后骨密度(BMD)的纵向变化对于评估新的干预措施非常重要。我们确定了 SCI 对股骨干骺端 BMD 的纵向影响。为了便于解释纵向结果,我们(1)确定了与错误的外周定量计算机断层扫描(pQCT)切片放置相关的 BMD 差异,以及(2)确定了操作员选择的 pQCT 剥离算法对 BMD 的影响。

方法

对有和无 SCI 的成人受试者的股骨干骺端(从远端 12%的长度处)进行 pQCT 成像。以 3mm 的间隔模拟切片放置误差,并以两种方式(基于阈值的与同心剥离)进行处理。

结果

BMD 在损伤后 2 年内迅速下降。归因于操作员选择的剥离方法的 BMD 差异较大(SCI 患者为 17.3%)。

结论

股骨干骺端 BMD 在 SCI 后下降,与其他解剖部位相似。当需要特殊敏感性来检测 BMD 适应时,同心(基于百分比)剥离方法可能是最合适的。当观察到不对称适应时,基于阈值的方法可能更合适。

相似文献

1
Longitudinal changes in femur bone mineral density after spinal cord injury: effects of slice placement and peel method.
Osteoporos Int. 2010 Jun;21(6):985-95. doi: 10.1007/s00198-009-1044-5. Epub 2009 Aug 26.
3
Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.
Osteoporos Int. 2016 Mar;27(3):1149-1160. doi: 10.1007/s00198-015-3326-4. Epub 2015 Sep 22.
6
Active-resisted stance modulates regional bone mineral density in humans with spinal cord injury.
J Spinal Cord Med. 2013 May;36(3):191-9. doi: 10.1179/2045772313Y.0000000092.
7
Bone mineral loss at the proximal femur in acute spinal cord injury.
Osteoporos Int. 2013 Sep;24(9):2461-9. doi: 10.1007/s00198-013-2323-8. Epub 2013 Mar 7.
8
Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury.
Osteoporos Int. 2014 Mar;25(3):1005-15. doi: 10.1007/s00198-013-2557-5. Epub 2013 Nov 5.
10
High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury.
Osteoporos Int. 2012 Sep;23(9):2335-46. doi: 10.1007/s00198-011-1879-4. Epub 2011 Dec 21.

引用本文的文献

2
Bone Mineral Density Post a Spinal Cord Injury: A Review of the Current Literature Guidelines.
Cureus. 2022 Mar 23;14(3):e23434. doi: 10.7759/cureus.23434. eCollection 2022 Mar.
4
Turning Over the Hourglass.
Phys Ther. 2017 Oct 1;97(10):949-963. doi: 10.1093/ptj/pzx072.
7
Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb.
Osteoporos Int. 2016 Mar;27(3):1149-1160. doi: 10.1007/s00198-015-3326-4. Epub 2015 Sep 22.
8
Bone Imaging and Fracture Risk after Spinal Cord Injury.
Curr Osteoporos Rep. 2015 Oct;13(5):310-7. doi: 10.1007/s11914-015-0288-6.
9
Bone loss in a new rodent model combining spinal cord injury and cast immobilization.
J Musculoskelet Neuronal Interact. 2014 Sep;14(3):255-66.

本文引用的文献

2
Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury.
J Musculoskelet Neuronal Interact. 2008 Jul-Sep;8(3):227-38.
3
A prospective study of health and risk of mortality after spinal cord injury.
Arch Phys Med Rehabil. 2008 Aug;89(8):1482-91. doi: 10.1016/j.apmr.2007.11.062.
5
High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury.
Bone. 2008 Jul;43(1):169-176. doi: 10.1016/j.bone.2008.03.004. Epub 2008 Mar 20.
6
Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury.
Phys Ther. 2008 Mar;88(3):387-96. doi: 10.2522/ptj.20070224. Epub 2008 Jan 17.
7
Bilateral asymmetries in clinical measures of lower-extremity anatomic characteristics.
Clin J Sport Med. 2007 Sep;17(5):357-61. doi: 10.1097/JSM.0b013e31811df950.
8
Limitations of peripheral quantitative computed tomography metaphyseal bone density measurements.
J Clin Endocrinol Metab. 2007 Nov;92(11):4248-53. doi: 10.1210/jc.2007-0126. Epub 2007 Aug 7.
10
Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training.
Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):169-79. doi: 10.1177/1545968306293447.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验