Suppr超能文献

多维 NMR 中用于稳健可重复非均匀采样的确定性调度。

Deterministic schedules for robust and reproducible non-uniform sampling in multidimensional NMR.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

J Magn Reson. 2012 Jan;214(1):296-301. doi: 10.1016/j.jmr.2011.12.002. Epub 2011 Dec 10.

Abstract

We show that a simple, general, and easily reproducible method for generating non-uniform sampling (NUS) schedules preserves the benefits of random sampling, including inherently reduced sampling artifacts, while removing the pitfalls associated with choosing an arbitrary seed. Sampling schedules are generated from a discrete cumulative distribution function (CDF) that closely fits the continuous CDF of the desired probability density function. We compare random and deterministic sampling using a Gaussian probability density function applied to 2D HSQC spectra. Data are processed using the previously published method of Spectroscopy by Integration of Frequency and Time domain data (SIFT). NUS spectra from deterministic sampling schedules were found to be at least as good as those from random schedules at the SIFT critical sampling density, and significantly better at half that sampling density. The method can be applied to any probability density function and generalized to greater than two dimensions.

摘要

我们展示了一种简单、通用且易于重现的非均匀采样(NUS)方案生成方法,该方法保留了随机采样的优势,包括固有减少的采样伪影,同时消除了与选择任意种子相关的陷阱。采样方案是从离散累积分布函数(CDF)生成的,该函数与所需概率密度函数的连续 CDF 紧密拟合。我们使用高斯概率密度函数比较了二维 HSQC 光谱的随机和确定性采样。使用先前发布的通过频率和时域数据集成进行光谱学的方法(SIFT)处理数据。在 SIFT 关键采样密度下,确定性采样方案的 NUS 光谱至少与随机方案一样好,而在采样密度减半时则要好得多。该方法可应用于任何概率密度函数,并可推广到二维以上。

相似文献

1
Deterministic schedules for robust and reproducible non-uniform sampling in multidimensional NMR.
J Magn Reson. 2012 Jan;214(1):296-301. doi: 10.1016/j.jmr.2011.12.002. Epub 2011 Dec 10.
2
Accurate scoring of non-uniform sampling schemes for quantitative NMR.
J Magn Reson. 2014 Sep;246:31-5. doi: 10.1016/j.jmr.2014.06.020. Epub 2014 Jul 2.
3
Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data.
J Magn Reson. 2015 Jul;256:60-69. doi: 10.1016/j.jmr.2015.04.003. Epub 2015 Apr 25.
4
Randomization improves sparse sampling in multidimensional NMR.
J Magn Reson. 2008 Aug;193(2):317-20. doi: 10.1016/j.jmr.2008.05.011. Epub 2008 May 21.
6
High fidelity sampling schedules for NMR spectra of high dynamic range.
J Magn Reson. 2022 Jun;339:107228. doi: 10.1016/j.jmr.2022.107228. Epub 2022 Apr 26.
7
Revisiting aliasing noise to build more robust sparsity in nonuniform sampling 2D-NMR.
Magn Reson Chem. 2023 Jun;61(6):337-344. doi: 10.1002/mrc.5340. Epub 2023 Mar 13.
8
Optimization of random time domain sampling in multidimensional NMR.
J Magn Reson. 2008 May;192(1):123-30. doi: 10.1016/j.jmr.2008.02.003. Epub 2008 Feb 12.
9
Optimized sampling patterns for multidimensional T2 experiments.
J Magn Reson. 2009 Mar;197(1):63-70. doi: 10.1016/j.jmr.2008.12.005. Epub 2008 Dec 13.
10
The influence of the probability density function on spectral quality in nonuniformly sampled multidimensional NMR.
J Magn Reson. 2020 Feb;311:106671. doi: 10.1016/j.jmr.2019.106671. Epub 2019 Dec 20.

引用本文的文献

1
Evaluating metrics of spectral quality in nonuniform sampling.
J Magn Reson Open. 2025 Jun;23. doi: 10.1016/j.jmro.2025.100187. Epub 2025 Jan 27.
2
Non-Uniform Sampling for Quantitative NOESY.
Magn Reson Chem. 2025 Jul;63(7):495-507. doi: 10.1002/mrc.5529. Epub 2025 May 16.
3
High fidelity sampling schedules for NMR spectra of high dynamic range.
J Magn Reson. 2022 Jun;339:107228. doi: 10.1016/j.jmr.2022.107228. Epub 2022 Apr 26.
4
Evaluation of Non-Uniform Sampling 2D H-C HSQC Spectra for Semi-Quantitative Metabolomics.
Metabolites. 2020 May 16;10(5):203. doi: 10.3390/metabo10050203.
5
Pitfalls in compressed sensing reconstruction and how to avoid them.
J Biomol NMR. 2017 Jun;68(2):79-98. doi: 10.1007/s10858-016-0068-3. Epub 2016 Nov 11.
6
Subrandom methods for multidimensional nonuniform sampling.
J Magn Reson. 2016 Aug;269:128-137. doi: 10.1016/j.jmr.2016.06.007. Epub 2016 Jun 9.
7
Deterministic multidimensional nonuniform gap sampling.
J Magn Reson. 2015 Dec;261:19-26. doi: 10.1016/j.jmr.2015.09.016. Epub 2015 Oct 23.
8
Accurate scoring of non-uniform sampling schemes for quantitative NMR.
J Magn Reson. 2014 Sep;246:31-5. doi: 10.1016/j.jmr.2014.06.020. Epub 2014 Jul 2.
9
Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR.
J Biomol NMR. 2014 Apr;58(4):303-14. doi: 10.1007/s10858-014-9823-5. Epub 2014 Mar 29.
10
Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy.
J Magn Reson. 2013 Dec;237:40-48. doi: 10.1016/j.jmr.2013.09.013. Epub 2013 Oct 1.

本文引用的文献

1
A proton-detected 4D solid-state NMR experiment for protein structure determination.
Chemphyschem. 2011 Apr 4;12(5):915-8. doi: 10.1002/cphc.201100062. Epub 2011 Feb 15.
2
Rapid three-dimensional MAS NMR spectroscopy at critical sensitivity.
Angew Chem Int Ed Engl. 2010 Nov 22;49(48):9215-8. doi: 10.1002/anie.201003329.
4
A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins.
J Magn Reson. 2010 Jan;202(1):109-16. doi: 10.1016/j.jmr.2009.10.006. Epub 2009 Oct 31.
5
Coupled decomposition of four-dimensional NOESY spectra.
J Am Chem Soc. 2009 Sep 16;131(36):12970-8. doi: 10.1021/ja902012x.
7
Protein structure determination in living cells by in-cell NMR spectroscopy.
Nature. 2009 Mar 5;458(7234):102-5. doi: 10.1038/nature07814.
8
Randomization improves sparse sampling in multidimensional NMR.
J Magn Reson. 2008 Aug;193(2):317-20. doi: 10.1016/j.jmr.2008.05.011. Epub 2008 May 21.
9
Hyperdimensional NMR spectroscopy with nonlinear sampling.
J Am Chem Soc. 2008 Mar 26;130(12):3927-36. doi: 10.1021/ja077282o. Epub 2008 Mar 1.
10
Optimization of random time domain sampling in multidimensional NMR.
J Magn Reson. 2008 May;192(1):123-30. doi: 10.1016/j.jmr.2008.02.003. Epub 2008 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验